Abstract. Experimental data are shown for the influence of substituting quadrivalent ions on the concentration phase transitions "rhombohedral-orthorhombic structure" and "semiconductor-metal" in ceramic manganites of specifically designed system La 3+ c=0.15, 0.17, 0.19; 0.025x0.125). Regularities in the concentration dependences of unit cell volume, saturation magnetization, Curie point, and resistivity were established. Ge-substituted manganites had essentially higher values of magnetization and Curie temperature than analogous compositions with Ti. The approach to the interpretation of experimental results is discussed in terms of electron configurations and ionic radii of substituents taking into account oxygen nonstoichiometry and cation vacancies.
The martensite-to-austenite reversion mechanisms under continuous heating and annealing of metastable austenitic stainless steel subjected to cold swaging were studied. The reversion-temperature-time diagram was constructed using high-resolution dilatometry. The diagram revealed a sequence of martensitic and diffusional reversion and recrystallization. Martensitic and diffusional reversion might be separated by using the heating rate of >10 °C/s. The reversion started via the martensitic mechanism, and the diffusional mechanism developed during subsequent heating. However, both mechanisms enhance simultaneously during continuous heating at slow heating rates (<10 °C/s). At higher temperatures, recrystallization occurred. Post-mortem microstructure analysis has allowed classifying the reverse annealing modes into low- (500–650 °C), medium- (~700 °C), and high-temperature (~800 °C) regimes. During low-temperature annealing, the development of the phase reversion, recovery, recrystallization, and carbide precipitation was characterized by both a high amount of new austenite grains and restriction of their growth that resulted in the formation of an ultrafine grain structure with an average grain size of 100–200 nm. Medium-temperature annealing was associated with the formation of almost a fully recrystallized austenitic structure, but the lamellar regions were still detected. Austenitic grain growth and dissolution of carbide particles were enhanced during high-temperature annealing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.