Stoneham [Phys. Rev. B 1, 3966 (19'70)]. A notational error might cause confusion. In Eq. (3.6), X", should read R"" the potential associated with the pth interstice (the division of K", into terms associated with different interstices is to some extent arbitrary but does not affect subsequent steps). Equations after (3.6) should all contain &&+X", rather than X", alone. The proper terms were used throughout the actual calculations, so the conclusions are not affected. A final point is that the integrand in Eq. (A6) should contain x rather than xa as printed. The related formulas are correct.
The earliest ideas of the polaron recognized that the coupling of an electron to ionic vibrations would affect its apparent mass and could effectively immobilize the carrier (self-trapping). We discuss how these basic ideas have been generalized to recognize new materials and new phenomena. First, there is an interplay between self-trapping and trapping associated with defects or with fluctuations in an amorphous solid. In high dielectric constant oxides, like HfO 2 , this leads to oxygen vacancies having as many as five charge states. In colossal magnetoresistance manganites, this interplay makes possible the scanning tunnelling microscopy (STM) observation of polarons. Second, excitons can self-trap and, by doing so, localize energy in ways that can modify the material properties. Third, new materials introduce new features, with polaron-related ideas emerging for uranium dioxide, gate dielectric oxides, Jahn-Teller systems, semiconducting polymers and biological systems. The phonon modes that initiate self-trapping can be quite different from the longitudinal optic modes usually assumed to dominate. Fourth, there are new phenomena, like possible magnetism in simple oxides, or with the evolution of short-lived polarons, like muons or excitons. The central idea remains that of a particle whose properties are modified by polarizing or deforming its host solid, sometimes profoundly. However, some of the simpler standard assumptions can give a limited, indeed misleading, description of real systems, with qualitative inconsistencies. We discuss representative cases for which theory and experiment can be compared in detail.
Non-radiative transitions affect many aspects of semiconductor performance. Normally they reduce device efficiency by suppressing luminescence, creating defects, reducing carrier lifetimes, or enhancing diffusion during operation. The present review surveys both the theoretical and practical understanding of non-radiative transitions. It includes general theoretical results and the associated ideas, with the emphasis on phonon-induced and defect Auger processes. Most of the purely formal aspects are omitted, but the points of principle where uncertainties remain are discussed. The review also covers the relation between basic theoretical studies and practical applied work on device degradation. This includes a description of the atomic processes involved in the more important mechanism of device deterioration and the theoretical understanding of the mechanism of these underlying processes. Finally, there is a survey of models proposed for 'killer' centres.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.