Fluorescence spectroscopy and microscopy have been utilized as tools in membrane biophysics for decades now. Because phospholipids are non-fluorescent, the use of extrinsic membrane probes in this context is commonplace. Among the latter, 1,6-diphenylhexatriene (DPH) and its trimethylammonium derivative (TMA-DPH) have been extensively used. It is widely believed that, owing to its additional charged group, TMA-DPH is anchored at the lipid/water interface and reports on a bilayer region that is distinct from that of the hydrophobic DPH. In this study, we employ atomistic MD simulations to characterize the behavior of DPH and TMA-DPH in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and POPC/cholesterol (4:1) bilayers. We show that although the dynamics of TMA-DPH in these membranes is noticeably more hindered than that of DPH, the location of the average fluorophore of TMA-DPH is only~3-4 Å more shallow than that of DPH. The hindrance observed in the translational and rotational motions of TMA-DPH compared to DPH is mainly not due to significant differences in depth, but to the favorable electrostatic interactions of the former with electronegative lipid atoms instead. By revealing detailed insights on the behavior of these two probes, our results are useful both in the interpretation of past work and in the planning of future experiments using them as membrane reporters.
Molecular dynamics simulations of bilayer systems consisting of varying proportions of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), cholesterol (Chol), and intrinsically fluorescent Chol analogues dehydroergosterol (DHE) or cholestatrienol (CTL) were carried out to study in detail the extent to which these fluorescent probes mimic Chol's behavior (location, orientation, dynamics) in membranes as well as their effect on host bilayer structure and dynamics (namely their ability to induce membrane ordering in comparison with Chol). Control properties of POPC and POPC/Chol bilayers agree well with published experimental and simulation work. Both probes and Chol share similar structural and dynamical properties within the bilayers. Additionally, the fluorescent sterols induce membrane ordering to a similar (slightly lower) extent to that of Chol. These findings combined demonstrate that the two studied fluorescent sterols are adequate analogues of Chol, and may be used with advantage over side-chain labeled sterols. The small structural differences between the three studied sterols are responsible for the slight variations in the calculated properties, with CTL presenting a more similar behavior to Chol (correlating with its larger structural similarity to Chol) compared to DHE.
Molecular dynamics (MD) simulations of bilayers of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) with varying amounts of cholesterol (0, 5, 20, and 40mol%) were carried out in the absence and presence of inserted pyrene molecules. Both fluorophore and bilayer parameters were computed, for characterization of probe location and dynamics, as well as its effects on the host bilayer. In agreement with previous studies in fluid disordered bilayers, pyrene prefers to be located in the hydrophobic acyl chain region of POPC bilayers, close to the glycerol group of lipid molecules and causes ordering of the lipid acyl chains. However, incorporation of pyrene in binary POPC/cholesterol bilayers decreases the acyl chain order parameter (especially near the end of the chains), opposing the ordering effect of cholesterol. These effects are modest and mainly felt locally. Significantly, as the bilayer is enriched with cholesterol, the relative position of pyrene and the POPC carbonyl and phosphocholine groups is invariant, and the local water density around the probe decreases. This work clarifies and supports the cautious use of pyrene Ham effect to effectively measure equivalent polarity in lipid bilayers. Within the time scale of the MD simulations, which is of the magnitude of the fluorescence lifetime of pyrene, the thermally averaged polarity of lipid bilayers is nearly out of influence of spurious uncertainty in the transverse location of pyrene in the bilayers. This renders the values of equivalent polarity measurements through the pyrene Ham effect more reliable and reproducible than previously expected.
T-1249 is a peptide that inhibits the fusion of HIV envelope with the target cell membrane. Recent results indicate that T-1249, as in the case of related inhibitor peptide T-20 (enfuvirtide), interacts with membranes, more extensively in the bilayer liquid disordered phase than in the liquid ordered state, which could be linked to its effectiveness. Extensive molecular dynamics simulations (100 ns) were carried out to investigate the interaction between T-1249 and bilayers of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) and POPC/cholesterol (1 : 1). It was observed that T-1249 interacts to different extents with both membrane systems and that peptide interaction with the bilayer surface has a local effect on membrane structure. Formation of hydrogen bonding between certain peptide residues and several acceptor and donor groups in the bilayer molecules was observed. T-1249 showed higher extent of interaction with bilayers when compared to T-20. This is most notable in POPC/Chol membranes, owing to more peptide residues acting as H bond donors and acceptors between the peptide and the bilayer lipids, including H-bonds formed with cholesterol. This behavior is at variance with that of T-20, which forms no H bonds with cholesterol. This higher ability to interact with membranes is probably correlated with its higher inhibitory efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.