We present a novel lossless (reversible) data-embedding technique, which enables the exact recovery of the original host signal upon extraction of the embedded information. A generalization of the well-known least significant bit (LSB) modification is proposed as the data-embedding method, which introduces additional operating points on the capacity-distortion curve. Lossless recovery of the original is achieved by compressing portions of the signal that are susceptible to embedding distortion and transmitting these compressed descriptions as a part of the embedded payload. A prediction-based conditional entropy coder which utilizes unaltered portions of the host signal as side-information improves the compression efficiency and, thus, the lossless data-embedding capacity.
We propose a fully automatic and computationally efficient framework for analysis and summarization of soccer videos using cinematic and object-based features. The proposed framework includes some novel low-level processing algorithms, such as dominant color region detection, robust shot boundary detection, and shot classification, as well as some higher-level algorithms for goal detection, referee detection, and penalty-box detection. The system can output three types of summaries: i) all slow-motion segments in a game; ii) all goals in a game; iii) slow-motion segments classified according to object-based features. The first two types of summaries are based on cinematic features only for speedy processing, while the summaries of the last type contain higher-level semantics. The proposed framework is efficient, effective, and robust. It is efficient in the sense that there is no need to compute object-based features when cinematic features are sufficient for the detection of certain events, e.g., goals in soccer. It is effective in the sense that the framework can also employ object-based features when needed to increase accuracy (at the expense of more computation). The efficiency, effectiveness, and robustness of the proposed framework are demonstrated over a large data set, consisting of more than 13 hours of soccer video, captured in different countries and under different conditions.
Printing from an NTSC source and conversion of NTSC source material to high-definition television (HDTV) format are some of the applications that motivate superresolution (SR) image and video reconstruction from low-resolution (LR) and possibly blurred sources. Existing methods for SR image reconstruction are limited by the assumptions that the input LR images are sampled progressively, and that the aperture time of the camera is zero, thus ignoring the motion blur occurring during the aperture time. Because of the observed adverse effects of these assumptions for many common video sources, this paper proposes (i) a complete model of video acquisition with an arbitrary input sampling lattice and a nonzero aperture time, and (ii) an algorithm based on this model using the theory of projections onto convex sets to reconstruct SR still images or video from an LR time sequence of images. Experimental results with real video are provided, which clearly demonstrate that a significant increase in the image resolution can be achieved by taking the motion blurring into account especially when there exists large interframe motion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.