The structural application of synthetic fibre reinforced concrete (FRC) has become widespread in the construction industry in order to satisfy the requirement of the earthquake resistant structures. Research conducted so far are focused on the structural behaviour of RC column externally confined with FRP composites, while studies are needed to address the behaviour of FRP strengthened RC column fabricated using fibre reinforced concrete. With the intention that the experimental investigation was carried out to evaluate the feasibility use of CFRP composite strips in strengthening of RC column made with fibre reinforced concrete. Circular synthetic Polypropylene fibre was used in the rate of 0.50% in the volume of concrete. CFRP strips having a width of 50 mm were used to confine the column and the experimental parameters were effective spacing between the CFRP strips (20 mm and 30 mm) and the number of CFRP layers (one, two and three). The externally bonded CFRP strips counteract the lateral expansion of the concrete significantly by providing restraining effect and thus effect enhanced the stiffness of the column. The column strengthened with CFRP strips showed a maximum of 198.87% and 91.75% enhancement in axial deformation control and ultimate strength, respectively, compared to that of reference column. From the test results obtained, it is suggested that CFRP strips with the spacing of 20 mm and 30 mm can be used in strengthening of RC column made with FRC; however the column confined with 30 mm spacing provides an economical advantage compared to that of 20 mm spacing.
In this paper, an attempt to overcome the problem of brittleness of concrete, by adding polypropylene fibers to the concrete is made. The performance of the polypropylene fiber reinforced concrete will be investigated experimentall under two point middle third of monotonic load for various types of polypropylene fibers and FRP Wrapping.
An accurate frequency synchronization method using the zadoff-chu (ZC) constant envelop preamble is analyzed, and a new preamble weighted by pseudo-noise sequence is used for orthogonal frequency division multiplexing (OFDM) systems. Using this method, frequency offset estimator range is greatly enlarged with no loss in accuracy. The range of the frequency estimation is ±30 of subcarrier spacing using ZC sequence as preamble. Simulations in the MATLAB for an AWGN channel show that the proposed method achieves superior performance to existing techniques in terms of frequency accuracy and range.
The use of self compacting concrete (SCC) in civil engineering works has become an attractive option which produces confident cohesive concrete. This paper reviewed the feasibility of preparing a SCC without using super-plasticizer but with only mineral admixtures that are available locally, with the coarse aggregate size of with 20 mm well graded aggregates which is entirely a different way of preparation of SCC. The enhancement aspects were tested and ascertained with the EFNARC guidelines. The hardened properties of SCC were tested and compared with control concrete of M 25 grade. In the preliminary investigation, mechanical properties of the SCC which have been prepared by the above said method were tested by its unique testing methodologies. Based on the test results, in the second phase, the flexural behavior of the SCC specimens, using beam specimens were tested for its load carrying capacity by loading frame. In both the phases of investigation, the results revealed that this type of SCC will be promising and effective combination to that of the traditional type of SCC prepared by Glenium product and also cost effective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.