Several mutations in nuclear genes encoding for mitochondrial components have been associated with an increased cancer risk or are even causative, e.g. succinate dehydrogenase (SDHB, SDHC and SDHD genes) and iso-citrate dehydrogenase (IDH1 and IDH2 genes). Recently, studies have suggested an eminent role for mitochondrial DNA (mtDNA) mutations in the development of a wide variety of cancers. Various studies associated mtDNA abnormalities, including mutations, deletions, inversions and copy number alterations, with mitochondrial dysfunction. This might, explain the hampered cellular bioenergetics in many cancer cell types. Germline (e.g. m.10398A>G; m.6253T>C) and somatic mtDNA mutations as well as differences in mtDNA copy number seem to be associated with cancer risk. It seems that mtDNA can contribute as driver or as complementary gene mutation according to the multiple-hit model. This can enhance the mutagenic/clonogenic potential of the cell as observed for m.8993T>G or influences the metastatic potential in later stages of cancer progression. Alternatively, other mtDNA variations will be innocent passenger mutations in a tumor and therefore do not contribute to the tumorigenic or metastatic potential. In this review, we discuss how reported mtDNA variations interfere with cancer treatment and what implications this has on current successful pharmaceutical interventions. Mutations in MT-ND4 and mtDNA depletion have been reported to be involved in cisplatin resistance. Pharmaceutical impairment of OXPHOS by metformin can increase the efficiency of radiotherapy. To study mitochondrial dysfunction in cancer, different cellular models (like ρ(0) cells or cybrids), in vivo murine models (xenografts and specific mtDNA mouse models in combination with a spontaneous cancer mouse model) and small animal models (e.g. Danio rerio) could be potentially interesting to use. For future research, we foresee that unraveling mtDNA variations can contribute to personalized therapy for specific cancer types and improve the outcome of the disease.
mtDNA variations often result in bioenergetic dysfunction inducing a metabolic switch toward glycolysis resulting in an unbalanced pH homeostasis. In hypoxic cells, expression of the tumor-associated carbonic anhydrase IX (CAIX) is enhanced to maintain cellular pH homeostasis. We hypothesized that cells with a dysfunctional oxidative phosphorylation machinery display elevated CAIX expression levels. Increased glycolysis was observed for cytoplasmic 143B mutant hybrid (m.3243A>G, >94.5%) cells (p < 0.05) and 143B mitochondrial DNA (mtDNA) depleted cells (p < 0.05). Upon hypoxia (0.2%, 16 h), genetic or pharmacological oxidative phosphorylation (OXPHOS) inhibition resulted in decreased CAIX (p < 0.05), vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1-alpha (HIF-1α) expression levels. Reactive oxygen species (ROS) and prolyl-hydroxylase 2 (PHD2) levels could not explain these observations. In vivo, tumor take (>500 mm 3) took longer for mutant hybrid xenografts, but growth rates were comparable with control tumors upon establishment. Previously, it has been shown that HIF-1α is responsible for tumor establishment. In agreement, we found that HIF-1α expression levels and the pimonidazole-positive hypoxic fraction were reduced for the mutant hybrid xenografts. Our results demonstrate that OXPHOS dysfunction leads to a decreased HIF-1α stabilization and subsequently to a reduced expression of its downstream targets and hypoxic fraction in vivo. In contrast, hypoxia-inducible factor 2-alpha (HIF-2α) expression levels in these xenografts were enhanced. Inhibition of mitochondrial function is therefore an interesting approach to increase therapeutic efficacy in hypoxic tumors.
Low mitochondrial DNA (mtDNA) copy number in tumors has been associated with worse prognosis in colorectal cancer (CRC). This study further deciphers the role of mtDNA copy number in CRC by comparing mtDNA copy number between healthy, adenoma and carcinoma tissue, by investigating its association according to several clinicopathological characteristics in CRC, and by relating it to CRC-specific survival in CRC patients. A hospital-based series of samples including cancer, adenoma and adjacent histologically normal tissue from primary CRC patients (n = 56) and recurrent CRC (n = 16) was studied as well as colon mucosa samples from healthy subjects (n = 76). Furthermore, mtDNA copy number was assessed in carcinomas of 693 CRC cases identified from the population-based Netherlands Cohort Study (NLCS). MtDNA copy number was significantly lower in carcinoma tissue (P = 0.011) and adjacent tissue (P < 0.001) compared to earlier resected adenoma tissue and in primary CRC tissue compared to recurrent CRC tissue (P = 0.011). Within both study populations, mtDNA copy number was significantly lower in mutated BRAF (P = 0.027 and P = 0.006) and in microsatellite unstable (MSI) tumors (P = 0.033 and P < 0.001) and higher in KRAS mutated tumors (P = 0.004). Furthermore, the association between mtDNA and survival seemed to follow an inverse U-shape with the highest HR observed in the second quintile of mtDNA copy number (HR = 1.70, 95% CI = 1.18, 2.44) compared to the first quintile. These results might reflect an association of mtDNA copy number with various malignant processes in cancer cells and warrants further research on tumor energy metabolism in CRC prognosis.
Defective complex I (CI) is the most common type of oxidative phosphorylation disease, with an incidence of 1 in 5000 live births. Here, whole genome expression profiling of fibroblasts from CI deficient patients was performed to gain insight into the cell pathological mechanism. Our results suggest that patient fibroblasts responded to oxidative stress by Nrf2-mediated induction of the glutathione antioxidant system and Gadd45-mediated activation of the DNA damage response pathway. Furthermore, the observed reduced expression of selenoproteins, might explain the disturbed calcium homeostasis previously described for the patient fibroblasts and might be linked to endoplasmic reticulum stress. These results suggest that both glutathione and selenium metabolism are potentially therapeutic targets in CI deficiency.
Oxidative phosphorylation disorders are often associated with increased oxidative stress and antioxidant therapy is frequently given as treatment. However, the role of oxidative stress in oxidative phosphorylation disorders or patients is far from clear and consequently the preventive or therapeutic effect of antioxidants is highly anecdotic. Therefore, we performed a systematic study of a panel of oxidative stress parameters (reactive oxygen species levels, damage and defense) in fibroblasts of twelve well-characterized oxidative phosphorylation patients with a defect in the POLG1 gene, in the mitochondrial DNA-encoded tRNA-Leu gene (m.3243A>G or m.3302A>G) and in one of the mitochondrial DNA-encoded NADH dehydrogenase complex I (CI) subunits. All except two cell lines (one POLG1 and one tRNA-Leu) showed increased reactive oxygen species levels compared with controls, but only four (two CI and two tRNA-Leu) cell lines provided evidence for increased oxidative protein damage. The absence of a correlation between reactive oxygen species levels and oxidative protein damage implies differences in damage prevention or correction. This was investigated by gene expression studies, which showed adaptive and compensating changes involving antioxidants and the unfolded protein response, especially in the POLG1 group. This study indicated that patients display individual responses and that detailed analysis of fibroblasts enables the identification of patients that potentially benefit from antioxidant therapy. Furthermore, the fibroblast model can also be used to search for and test novel, more specific antioxidants or explore ways to stimulate compensatory mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.