Amorphous hydrogenated silicon carbonitride films were produced by remote plasma chemical vapor deposition (RP-CVD) from 1,1,3,3-tetramethyldisilazane (TMDSN) as the single-source compound using a H 2 -N 2 upstream-gas-mixture for plasma generation. The reactivity of particular TMDSN bonds in the RP-CVD initiation step has been examined using a hexamethyldisilazane model compound in the deposition experiments. The active species contributing to RP-CVD were identified by optical emission spectroscopic analysis of the plasma region. The films were examined using Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. The effect of N 2 content in the H 2 -N 2 upstream-gasmixture on plasma generation of the active species, growth rate, chemical structure, and surface morphology of the resulting films is reported. {Electronic supplementary information (ESI) available: deconvoluted emission and IR spectra of a-Si-N-C-H films. See
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.