Invasive lobular carcinoma (ILC) is an understudied subtype of breast cancer that requires novel therapies in the advanced setting. To study acquired resistance to endocrine therapy in ILC, we have recently performed RNA-Sequencing on long-term estrogen deprived cell lines and identified FGFR4 overexpression as a top druggable target. Here, we show that FGFR4 expression also increases dramatically in endocrine-treated distant metastases, with an average fold change of 4.8 relative to the paired primary breast tumor for ILC, and 2.4-fold for invasive ductal carcinoma (IDC). In addition, we now report that FGFR4 hotspot mutations are enriched in metastatic breast cancer, with an additional enrichment for ILC, suggesting a multimodal selection of FGFR4 activation. These data collectively support the notion that FGFR4 is an important mediator of endocrine resistance in ILC, warranting future mechanistic studies on downstream signaling of overexpressed wild-type and mutant FGFR4.
BackgroundNot only four but rather seven different human epidermal growth factor receptor related (Her) receptor tyrosine kinases (RTKs) have been described to be expressed in a variety of normal and neoplastic tissues: Her1, Her2, Her3, and additionally four Her4 isoforms have been identified. A differential expression of Her4 isoforms does not, however, play any role in either the molecular diagnostics or treatment decision for breast cancer patients. The prognostic and predictive impact of Her4 expression in breast cancer is basically unclear.MethodsWe quantified the Her4 variants JM-a/CYT1, JM-a/CYT2, JM-b/CYT1, and JM-b/CYT2 by isoform-specific polymerase chain reaction (qPCR) in (i) triple-negative, (ii) Her2 positive breast cancer tissues and (iii) in benign breast tissues.ResultsIn all three tissue collectives we never found the JM-b/CYT1 or the JM-b/CYT2 isoform expressed. In contrast, the two JM-a/CYT1 and JM-a/CYT2 isoforms were always simultaneously expressed but at different ratios. We identified a positive prognostic impact on overall survival (OS) in triple-negative and event-free survival (EFS) in Her2 positive patients. This finding is independent of the absolute JM-a/CYT1 to JM-a/CYT2 expression ratio. In Her2 positive patients, Her4 expression only has a favorable effect in estrogen-receptor (ER)-positive but not in ER-negative individuals.ConclusionIn summary, JM-a/CYT1 and JM-a/CYT2 but not JM-b isoforms of the Her4 receptor are simultaneously expressed in both triple-negative and Her2 positive breast cancer tissues. Although different expression ratios of the two JM-a isoforms did not reveal any additional information, Her4 expression basically indicates a prolonged EFS and OFS. An extended expression analysis that takes all Her receptor homologs, including the Her4 isoforms, into account might render more precisely the molecular diagnostics required for the development of optimized targeted therapies.
IntroductionRecent studies showed the high and independent impact of age (<40 years) on pathologic complete response (pCR) and prognosis for patients undergoing neoadjuvant chemotherapy (NACT). Some physicians might not consider elderly patients (>65 years) for NACT due to poor prognosis or higher toxicity. The aim of this analysis is to help selecting appropriately elderly women who would benefit from NACT. Secondly, survival parameters are investigated in several histological subgroups.MethodsFrom 1998 to 2010, eight prospectively randomized German Breast Group (GBG) trials of anthracycline- and taxane-based NACT were performed and analyzed in this study.ResultsCompared to the overall average, elderly women had significant larger tumors and more overall lymph node involvement. Histologically, they had more G2 tumors, more estrogen-receptor positive tumors. pCR (ypT0 ypN0) was strongly associated with age. The multivariable logistic regression analysis of clinical parameters showed that young age, clinical stage T4, invasive ductal cancer and poor differentiated breast cancer are predictive for high pCR. The multivariate analyses of molecular subgroups showed that age >65years is a predictor of significant lower pCR in HER2− breast cancers. Nonetheless, HER2+ patients showed pCR rates as high− and HR+/HER2+ even higher - pCR rates compared to younger patients.DiscussionThis study underlines the unfavorable impact of higher age on pCR, but it shows a realistic chance for pCR if NACT is applied - especially for HER2+ patients. Furthermore, elderly patients with non-TNBC showed a good prognosis (comparable to younger patients) regarding overall survival, even if they do not have pCR.
Background Endocrine therapy resistance is a hallmark of advanced estrogen receptor (ER)-positive breast cancer. In this study, we aimed to determine acquired genomic changes in endocrine-resistant disease. Methods We performed DNA/RNA hybrid-capture sequencing on 12 locoregional recurrences after long-term estrogen deprivation and identified acquired genomic changes versus each tumor’s matched primary. Results Despite being up to 7 years removed from the primary lesion, most recurrences harbored similar intrinsic transcriptional and copy number profiles. Only two genes, AKAP9 and KMT2C, were found to have single nucleotide variant (SNV) enrichments in more than one recurrence. Enriched mutations in single cases included SNVs within transcriptional regulators such as ARID1A, TP53, FOXO1, BRD1, NCOA1, and NCOR2 with one local recurrence gaining three PIK3CA mutations. In contrast to DNA-level changes, we discovered recurrent outlier mRNA expression alterations were common—including outlier gains in TP63 (n = 5 cases [42%]), NTRK3 (n = 5 [42%]), NTRK2 (n = 4 [33%]), PAX3 (n = 4 [33%]), FGFR4 (n = 3 [25%]), and TERT (n = 3 [25%]). Recurrent losses involved ESR1 (n = 5 [42%]), RELN (n = 5 [42%]), SFRP4 (n = 4 [33%]), and FOSB (n = 4 [33%]). ESR1-depleted recurrences harbored shared transcriptional remodeling events including upregulation of PROM1 and other basal cancer markers. Conclusions Taken together, this study defines acquired genomic changes in long-term, estrogen-deprived disease; highlights the importance of longitudinal RNA profiling; and identifies a common ESR1-depleted endocrine-resistant breast cancer subtype with basal-like transcriptional reprogramming.
MarginProbe© detects positive margins in invasive carcinoma, DCIS as well as in invasive lobular carcinoma. The device decreases the re-excision rate after BCS significantly. It does not interfere with any of the factors we examined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.