Abstract. We present the results of a new study on the relationship between coronal X-ray emission and stellar rotation in late-type main-sequence stars. We have selected a sample of 259 dwarfs in the B − V range 0.5-2.0, including 110 field stars and 149 members of the Pleiades, Hyades, α Persei, IC 2602 and IC 2391 open clusters. All the stars have been observed with ROSAT, and most of them have photometrically-measured rotation periods available. Our results confirm that two emission regimes exist, one in which the rotation period is a good predictor of the total X-ray luminosity, and the other in which a constant saturated X-ray to bolometric luminosity ratio is attained; we present a quantitative estimate of the critical rotation periods below which stars of different masses (or spectral types) enter the saturated regime. In this work we have also empirically derived a characteristic time scale, τ e , which we have used to investigate the relationship between the X-ray emission level and an X-ray-based Rossby number R e = P rot /τ e : we show that our empirical time scale τ e resembles the theoretical convective turnover time for 0.4 º M/M º 1.2, but it also has the same functional dependence on B − V as L −1/2 bol in the color range 0.5 º B − V º 1.5. Our results imply that -for non-saturated coronae -the L x -P rot relation is equivalent to the L x /L bol vs. R e relation.
Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet's birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25-7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and welldefined planet sample within its 4-year mission lifetime. Transit, eclipse and phasecurve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10-100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H 2 O, CO 2 , CH 4 NH 3 , HCN, H 2 S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performedusing conservative estimates of mission performance and a
We carried out a Bayesian homogeneous determination of the orbital parameters of 231 transiting giant planets (TGPs) that are alone or have distant companions; we employed differential evolution Markov chain Monte Carlo methods to analyse radial-velocity (RV) data from the literature and 782 new high-accuracy RVs obtained with the HARPS-N spectrograph for 45 systems over ∼3 years. Our work yields the largest sample of systems with a transiting giant exoplanet and coherently determined orbital, planetary, and stellar parameters. We found that the orbital parameters of TGPs in non-compact planetary systems are clearly shaped by tides raised by their host stars. Indeed, the most eccentric planets have relatively large orbital separations and/or high mass ratios, as expected from the equilibrium tide theory. This feature would be the outcome of planetary migration from highly eccentric orbits excited by planetplanet scattering, Kozai-Lidov perturbations, or secular chaos. The distribution of α = a/a R , where a and a R are the semi-major axis and the Roche limit, for well-determined circular orbits peaks at 2.5; this agrees with expectations from the high-eccentricity migration (HEM), although it might not be limited to this migration scenario. The few planets of our sample with circular orbits and α > 5 values may have migrated through disc-planet interactions instead of HEM. By comparing circularisation times with stellar ages, we found that hot Jupiters with a < 0.05 au have modified tidal quality factors 10 5 Q p 10 9 , and that stellar Q s 10 6 −10 7 are required to explain the presence of eccentric planets at the same orbital distance. As a by-product of our analysis, we detected a non-zero eccentricity e = 0.104 +0.021 −0.018 for HAT-P-29; we determined that five planets that were previously regarded to be eccentric or to have hints of non-zero eccentricity, namely CoRoT-2b, CoRoT-23b, TrES-3b, HAT-P-23b, and WASP-54b, have circular orbits or undetermined eccentricities; we unveiled curvatures caused by distant companions in the RV time series of HAT-P-2, HAT-P-22, and HAT-P-29; we significantly improved the orbital parameters of the long-period planet HAT-P-17c; and we revised the planetary parameters of CoRoT-1b, which turned out to be considerably more inflated than previously found. of giant planets are still open questions. Among these are the migration of hot Jupiters, the origin of the frequently observed spin-orbit misalignments, and the architecture of planetary systems with closein giant planets. These planets are thought to be formed beyond the water-ice line (a 1−3 au) in the protoplanetary disc, where solid material is abundant because of ice condensation, Article published by EDP Sciences A107, page 1 of 16 A&A 602, A107 (2017)
We have developed a method based on wavelet transforms (WT) to detect sources in astronomical images obtained with photon-counting detectors, such as X-ray images. The WT is a multiscale transform which is suitable for detection and analysis of interesting image features (sources) spanning a range of sizes. This property of the WT is particularly well suited to the case where the Point-Spread Function is strongly varying across the image, and it is also e ective in the detection of extended sources. The method allows to measure source count rates, sizes, and ellipticity, with their errors. Care has been taken in the assessment of thresholds for detection, in the WT space, at any desired con dence level, through a detailed semi-analytical study of the statistical properties of noise in wavelet-transformed images. The method includes the use of exposure maps to handle sharp background gradients produced by a non-uniform exposure across the detector, which would otherwise yield many spurious detections. The same method is applied to evaluate upper limits to the count rate of undetected objects in the eld of view, allowing a sensitivity map for each observation to be constructed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.