In this paper, a reformulation of the Helmholtz integral equation for tridimesional acoustic radiation in a uniform subsonic flow is presented. An extension of the Sommerfeld radiation condition, for a free space in a uniform movement, makes possible the determination of the convected Green function, the elementary solution of the convected Helmholtz equation. The gradients of this convected Green function are, so, analyzed. Using these results, an integral representation for the acoustic pressure is established. This representation has the advantage of expressing itself in terms of new surface operators, which simplify the numerical study. For the case of a regular surface, the evaluation of the free term associated with the singular integrals shows that it is independent of the Mach number of the uniform flow. A physical interpretation of this result is offered. A numerical approximation method of the integral representation is developed. Furthermore, for a given mesh, an acoustic discretization criterion in a uniform flow is proposed. Finally, numerical examples are provided in order to validate the integral formula.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.