Abstract. This paper presents the set of plane-parallel model atmosphere equations for a very hot neutron star (X-ray burst source). The model equations assume both hydrostatic and radiative equilibrium, and the equation of state of an ideal gas in local thermodynamic equilibrium (LTE). The equation of radiative transfer includes terms describing Compton scattering of photons on free electrons in fully relativistic thermal motion, for photon energies approaching m e c 2 . Model equations take into account many bound-free and free-free energy-dependent opacities of hydrogen, helium, and the iron ions, and also a dozen boundbound opacities for the highest ions of iron. We solve model equations by partial linearisation and the technique of variable Eddington factors. Large grid of H-He-Fe model atmospheres of X-ray burst sources has been computed for 10 7 ≤ T eff ≤ 3 × 10 7 K, a wide range of surface gravity, and various iron abundances. We demonstrate that the spectra of X-ray bursters with iron present in the accreting matter differ significantly from pure H-He spectra (published in an earlier paper), and also from blackbody spectra. Comptonized spectra with significant iron abundance are generally closer to blackbody spectra than spectra of H-He atmospheres. The ratio of color to effective temperatures in our grid always remains in the range 1.2 < T c /T eff < 1.85. The present grid of model atmospheres and theoretical X-ray spectra will be used to determine the effective temperatures, radii and M/R ratios of bursting neutron stars from observational data.
XIPE, the X-ray Imaging Polarimetry Explorer, is a mission dedicated to X-ray Astronomy. At the time of writing XIPE is in a competitive phase A as fourth medium size mission of ESA (M4). It promises to reopen the polarimetry window in high energy Astrophysics after more than 4 decades thanks to a detector that efficiently exploits the photoelectric effect and to X-ray optics with large effective area. XIPE uniqueness is time-spectrallyspatially-resolved X-ray polarimetry as a breakthrough in high energy astrophysics and fundamental physics. Indeed the payload consists of three Gas Pixel Detectors at the focus of three X-ray optics with a total effective area larger than one XMM mirror but with a low weight. The payload is compatible with the fairing of the Vega launcher. XIPE is designed as an observatory for X-ray astronomers with 75 % of the time dedicated to a Guest Observer competitive program and it is organized as a consortium across Europe with main contributions from
Context.One of the possible approaches to detecting optical counterparts of GRBs requires monitoring large parts of the sky. This idea has gained some instrumental support in recent years, such as with the "Pi of the Sky" project. The broad sky coverage of the "Pi of the Sky" apparatus results from using cameras with wide-angle lenses (20 • × 20 • field of view). Optics of this kind introduce significant deformations of the point spread function (PSF), increasing with the distance from the frame centre. A deformed PSF results in additional uncertainties in data analysis. Aims. Our aim was to create a model describing highly deformed PSF in optical astronomy, allowing uncertainties caused by image deformations to be reduced. Methods. Detailed laboratory measurements of PSF, pixel sensitivity, and pixel response functions were performed. These data were used to create an effective high quality polynomial model of the PSF. Finally, tuning the model and tests in applications to the real sky data were performed. Results. We have developed a PSF model that accurately describes even very deformed stars in our wide-field experiment. The model is suitable for use in any other experiment with similar image deformation, with a simple tuning of its parameters. Applying this model to astrometric procedures results in a significant improvement over standard methods, while basic photometry precision performed with the model is comparable to the results of an optimised aperture algorithm. Additionally, the model was used to search for a weak signal -namely a possible gamma ray burst optical precursor -showing very promising results. Conclusions. Precise modelling of the PSF function significantly improves the astrometric precision and enhances the discovery potential of a wide-field system with lens optics.
Thermal dominated X-ray spectra of neutron stars in quiescent transient X-ray binaries and neutron stars that undergo thermonuclear bursts are sensitive to mass and radius. The mass-radius relation of neutron stars depends on the equation of state that governs their interior. Constraining this relation accurately is thus of fundamental importance to understand the nature of dense matter. In this context we introduce a pipeline to calculate realistic model spectra of rotating neutron stars with hydrogen and helium atmospheres. An arbitrarily fast rotating neutron star with a given equation of state generates the spacetime in which the atmosphere emits radiation. We use the Lorene/nrotstar code to compute the spacetime numerically and the Atm24 code to solve the radiative transfer equations self-consistently. Emerging specific intensity spectra are then ray-traced through the neutron star's spacetime from the atmosphere to a distant observer with the Gyoto code. Here, we present and test our fully relativistic numerical pipeline. To discuss and illustrate the importance of realistic atmosphere models we compare our model spectra to simpler models like the commonly used isotropic color-corrected blackbody emission. We highlight the importance of considering realistic model-atmosphere spectra together with relativistic ray tracing to obtain accurate predictions. We also insist on the crucial impact of the star's rotation on the observables. Finally, we close a controversy that has been appearing in the literature in the recent years regarding the validity of the Atm24 code.
The primary scientific goal of the GRIPS mission is to revolutionize our understanding of the early universe using γ -ray bursts. We propose a new generation gamma-ray observatory capable of unprecedented spectroscopy over a wide range of γ -ray energies (200 keV-50 MeV) and of polarimetry (200-1000 keV). The γ -ray sensitivity to nuclear absorption features enables the measurement of column densities as high as 10 28 cm −2 . Secondary goals achievable by this mission include direct measurements of all types of supernova interiors through γ -rays from radioactive decays, nuclear astrophysics with massive stars and novae, and studies of particle acceleration near compact stars, interstellar shocks, and clusters of galaxies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.