While narrow bipolar events (NBEs) could be related with lightning initiation, their intrinsic physics remains in question. Here we report on optical measurements by the Atmosphere‐Space Interactions Monitor (ASIM) on the International Space Station (ISS) of blue flashes associated with NBEs. They are observed in a narrow blue band centered at 337 nm, with no simultaneous activity at 777.4 nm, considered a strong lightning emission line. From radio waves measured from the ground, we find that 7 of 10 single‐pulse blue events can be identified as positive NBEs. The source altitudes estimated from optical and radio signals agree and indicate that the sources of the blue flashes are located between ∼8.5 and ∼14 km, in a cloud reaching 14–15 km altitude. The observations suggest that single‐pulse blue flashes are from cold ionization waves, so‐called streamers, and that positive NBEs are corona discharges formed by many streamers.
Abstract. We describe a computer code that simulates how a satellite observes optical radiation emitted by a lightning flash after it is scattered within an intervening cloud. Our code, CloudScat.jl, is flexible, fully open source and specifically tailored to modern instruments such as the Modular Multispectral Imaging Array (MMIA) component of the Atmosphere–Space Interactions Monitor (ASIM) that operates from the International Space Station. In this article, we describe the algorithms implemented in the code and discuss several applications and examples, with an emphasis on the interpretation of MMIA data.
We investigate the emergence of space stems ahead of negative leaders. These are luminous spots that appear ahead of an advancing leader mediating the leader's stepped propagation. We show that space stems start as regions of locally depleted conductivity that form in the streamers of the corona around the leader. An attachment instability enhances the electric field leading to strongly inhomogeneous, bright, and locally warmer regions ahead of the leader that explain the existing observations. Since the attachment instability is only triggered by fields above 10 kV/cm and internal electric fields are lower in positive than in negative streamers, our results explain why, although common in negative leaders, space stems, and stepping are hardly observed if not absent in positive leaders. Further work is required to fully explain the streamer to leader transition, which requires an electric current persisting for timescales longer than the typical attachment time of electrons, around 100 ns.
Abstract. We describe a computer code that simulates how a satellite observes optical radiation emitted by a lightning flash after it is scattered within an intervening cloud. Our code, CloudScat.jl, is flexible, fully open source and specifically tailored to modern instruments such as the Modular Multispectral Imaging Array (MMIA) component of the Atmosphere-Space Interactions Monitor (ASIM) that operates from the International Space Station. In this article we describe the algorithms implemented in the code and discuss several applications and examples, with an emphasis on the interpretation of MMIA data.
We investigate the launch of negative upward streamers from sprite glows. This phenomenon is readily observed in high‐speed observations of sprites and underlies the classification of sprites into carrot or column types. First, we describe how an attachment instability leads to a sharply defined region in the upper part of the streamer channel. This region has an enhanced electric field, low conductivity and strongly emits in the first positive system of molecular nitrogen. We identify it as the sprite glow. We then show how, in the most common configuration of a carrot sprite, several upward streamers emerge close to the lower boundary of the glow, where negative charge gets trapped and the lateral electric field is high enough. These streamers cut off the current flowing toward the glow and lead to the optical deactivation of the glow above. Finally, we discuss how our results naturally explain angel sprites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.