The instability of the price dynamics of the energy market from a theoretical point of view indicates the inadequacy of the dominant paradigm of the quantitative description of pricing processes, and from a practical point of view, it leads to abnormal shocks and crashes. A striking example is the COVID-stimulated spring drop of spot prices for crude oil by 305% to $36.73 a barrel. The theory of complex systems with the latest complex networking achievements using pragmatically verified econophysical approaches and models can become the basis of modern environmental science. In this case, it is possible to introduce certain measures of complexity, the change in the dynamics of which makes it possible to identify and prevent characteristic types of critical phenomena. In this paper, the possibility of using some econophysical approaches for quantitative assessment of complexity measures: (1) informational (Lempel-Ziv measure, various types of entropies (Shannon, Approximate, Permutation, Recurrence), (2) fractal and multifractal (Multifractal Detrended Fluctuation Analysis), (3) recurrent (Recurrence Plot and Recurrence Quantification Analysis), (4) Lévy’s stable distribution properties, (5) network (Visual Graph and Recurrence based) and (6) quantum (Heisenberg uncertainty principle) is investigated. Each of them detects patterns that are general for crisis states. We conclude that these measures make it possible to establish that the socially responsive exhibits characteristic patterns of complexity and the proposed measures of complexity allow us to build indicators-precursors of critical and crisis phenomena. Proposed quantitative measures of complexity classified and adapted for the crude oil market. Their behavior in the face of known market shocks and crashes has been analyzed. It has been shown that most of these measures behave characteristically in the periods preceding the critical event. Therefore, it is possible to build indicators-precursors of crisis phenomena in the crude oil market.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.