Metal-organic frameworks (MOFs) with high porosity could act as an ideal substitute for supercapacitors, but their poor electrical conductivities limit their electrochemical performances. In order to overcome this problem, conductive polypyrrole (PPy) has been introduced and a novel nanocomposite resulting from polyoxometalate (POM)-based MOFs (NENU-5) and PPy has been reported. It comprises the merits of POMs, MOFs, and PPy. Finally, the highly conductive PPy covering the surfaces of NENU-5 nanocrystallines can effectively improve the electron/ion transfer among NENU-5 nanocrystallines. The optimized NENU-5/PPy nanocomposite (the volume of Py is 0.15 mL) exhibits high specific capacitance (5147 mF·cm), larger than that of pristine NENU-5 (432 mF·cm). Furthermore, a symmetric supercapacitor device based on a NENU-5/PPy-0.15 nanocomposite possesses an excellent areal capacitance of 1879 mF·cm, which is far above other MOF-based supercapacitors.
A novel polyoxometalate-based metal–organic framework was synthesized and employed to demonstrate that the intermolecular π–π stacking are beneficial to promote the LIBs performance.
We encapsulate ionic liquids (ILs) into polyoxometalate-based metal–organic frameworks (POMOFs) to fabricate a series of ILs-functionalized POMOFs crystals (POMs-ILs@MOFs) and PMo10V2-ILs@MIL-100 crystals used as anode materials show high reversible capacity, superior cycling stability and rate capability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.