Cereals are the most important kharif season crop in Odisha. The present study was carried out to forecast the production of kharif cereals in Odisha by using the forecast values of area and yield of kharif cereals obtained from the selected best fit Autoregressive Integrated Moving Average (ARIMA) model. The data from 1970-71 to 2010-11 are considered as training set data and used for model building and from 2011-12 to 2015-16 are considered as testing set data and used for cross-validation of the selected model on the basis of the absolute percentage error. The ARIMA models are fitted to the stationary data which may be the original data or the differenced data. The different ARIMA models are evaluated on the basis of Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) at various lags. The possible ARIMA models are selected on the basis of significant coefficient of autoregressive and moving average components by using the training set data. The best fitted models are then selected on the basis of residual diagnostics test and model fit statistics. The ARIMA model found to be best fitted for area under kharif cereals and yield of kharif cereals are ARIMA (1,1,0) without constant and ARIMA (0,1,2) without constant respectively which are successfully cross-validated with the testing set data. The respective best fit ARIMA model has been used to forecast the area and yield of kharif cereals for the years 2016-17, 2017-18 and 2018-19. The forecast values of area shows a decrease, whereas, the forecast values of yield shows an increase. The decrease in area might have been the result of limited availability of area for cereals due to shifting towards non-food grain crops. The forecast values of production of kharif cereals obtained from the forecast values of area and yield of kharif cereals shows an increase which is due to the increase in forecast values of yield. Since there is limited scope for area expansion, the future production of kharif cereals can only be increased by increasing the yield to achieve the goal of food security for the growing population.
The present study was carried out to forecast the production of rabi pulse in Odisha by using the forecast values of area and yield of rabi pulses obtained from the selected best fit Autoregressive Integrated Moving Average (ARIMA) model. The data from 1971-72 to 2010-11 are considered as training set data and used for model building and from 2011-12 to 2015-16 are considered as testing set data and used for cross-validation of the selected model on the basis of the absolute percentage error. The ARIMA models are fitted to the stationary data which may be the original data and/or the differenced data. The different ARIMA models are judged on the basis of Autocorrelation Function (ACF) and Partial autocorrelation Function (PACF) at various lags. The possible ARIMA models are selected on the basis of significant coefficient of autoregressive and moving average components. The best fitted models are selected on the basis of residual diagnostics test and model fit statistics. The ARIMA model found to be best fitted for area under rabi pulse and yield of rabi pulse are ARIMA (2,0,0) with constant and ARIMA (0,1,1) without constant respectively which are successfully cross-validated with the testing set data. The excellent fit ARIMA model has been used to forecast the area and yield of rabi pulse for the years 2016-17, 2017-18 and 2018-19. The forecast value of area shows an increase, where as, the forecast values of yield shows a decrease. The forecast values of production of rabi pulse obtained from the forecast values of area and yield of rabi pulse shows an increase which is due to the increase in forecast value of area. Thus emphasis must be laid on increasing the future yield of rabi pulse so as to achieve sufficient increase in production of rabi pulses which could ensure nutritional security to more extent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.