BackgroundCurrent markers for prostate cancer, such as PSA lack specificity. Therefore, novel biomarkers are needed. Unfortunately, the complexity of body fluids often hampers biomarker discovery. An attractive alternative approach is the isolation of small vesicles, i.e. exosomes, ∼100 nm, which contain proteins that are specific to the tissue from which they are derived and therefore can be considered as treasure chests for disease-specific biomarker discovery.Materials and MethodsExosomes were isolated from 2 immortalized primary prostate epithelial cells (PNT2C2 and RWPE-1) and 2 PCa cell lines (PC346C and VCaP) by ultracentrifugation. After tryptic digestion, proteomic analyses utilized a nanoLC coupled with an LTQ-Orbitrap operated in tandem MS (MS/MS) mode. Accurate Mass and Time (AMT) tag approach was employed for peptide identification and quantitation. Candidate biomarkers were validated by Western blotting and Immunohistochemistry.ResultsProteomic characterization resulted in the identification of 248, 233, 169, and 216 proteins by at least 2 peptides in exosomes from PNT2C2, RWPE-1, PC346C, and VCaP, respectively. Statistical analyses revealed 52 proteins differently abundant between PCa and control cells, 9 of which were more abundant in PCa. Validation by Western blotting confirmed a higher abundance of FASN, XPO1 and PDCD6IP (ALIX) in PCa exosomes.ConclusionsIdentification of exosomal proteins using high performance LC-FTMS resulted in the discovery of PDCD6IP, FASN, XPO1 and ENO1 as new candidate biomarkers for prostate cancer.
In prostate cancer genomic rearrangements involving genes encoding ETS transcription factors are commonly present, with androgen-regulated transmembrane protease, serine 2 (TMPRSS2)-v-ets erythroblastosis virus E26 oncogen homologue (ERG) gene fusion occurring in 40-70%. Studies on the predictive value of ERG rearrangement as detected by in-situ hybridization or polymerase chain reaction have resulted in varying outcomes. The objective of this study was to correlate immunohistochemical ERG protein expression with clinico-pathological parameters at radical prostatectomy specimens, and to determine its predictive value for postoperative disease recurrence and progression in a prostate cancer screening cohort. Since androgen receptor is downregulated by ERG in cell lines, we also compared the expression of respective proteins. We selected 481 participants from the European Randomized Study of Screening for Prostate Cancer treated by radical prostatectomy for prostate adenocarcinoma. A tissue microarray was constructed containing representative cores of all prostate cancer specimens as well as 22 xenografts and seven cell lines. Immunohistochemical expression of ERG and androgen receptor was correlated with prostate-specific antigen (PSA), Gleason sum, pT-stage, surgical margins, biochemical recurrence, local recurrence, overall death and disease-specific death. ERG expression was detected in 284 patients (65%). Expression occurred significantly more frequent in patients with PSA r10 ng/ml (P ¼ 0.024). There was no significant association between ERG and Gleason sum, pT-stage or surgical margin status. PSA (P ¼ 0.011), Gleason sum (P ¼ 0.003), pT-stage (P ¼ 0.001) and surgical margin status (Po0.001) all had independent value for postoperative biochemical recurrence, while positive surgical margin (P ¼ 0.021) was the only independent predictor for local recurrence. ERG protein expression did not have prognostic value for the clinical end points in uni-and multivariate analyses. A positive correlation existed between ERG and androgen receptor expression in single tissue cores (Po0.001). In conclusion, immunohistochemical ERG expression has no predictive value for prostate cancer recurrence or progression after radical prostatectomy. Increasing ERG levels are associated with the upregulation of androgen receptor expression in clinical specimens.
Genomic rearrangements involving genes encoding erythroblast transformation-specific transcription factors are commonly present in prostate cancer. The TMPRSS2-ERG gene fusion that leads to ERG overexpression occurs in B70% of prostate cancers. Implementation of fusion gene detection in pathological practice, however, has been hampered by the lack of reliable ERG antibodies. The objective of this study was first to compare ERG immunohistochemistry using the recently described antibody EPR3864 with ERG mRNA by quantitative PCR and, second, to investigate ERG immunohistochemistry in diagnostic prostate cancer needle biopsies. We analyzed 41 primary prostate adenocarcinomas obtained by radical prostatectomy and 83 consecutive prostate cancer needle biopsies. In the prostatectomy specimens, immunohistochemical ERG expression was highly concordant with the ERG mRNA overexpression (sensitivity 100% and specificity 85%). ERG overexpression was due to TMPRSS2-ERG gene fusion in all cases. ERG protein expression was identified in 51/83 adenocarcinomas (61%) on needle biopsies. ERG expression was more frequent in tumors infiltrating Z2 needle biopsies (Po0.001) or occupying Z50% of a single biopsy (P ¼ 0.018). Expression of ERG also occurred in 11/21 (52%) high-grade prostate intraepithelial neoplasia lesions. In 5/87 (6%) needle biopsies containing benign secretory glands, weak ERG staining was focally observed. In all of these cases, respective glands were adjacent to adenocarcinomas. In conclusion, immunohistochemistry for ERG strongly correlated with ERG mRNA overexpression and was specific for prostate cancer on needle biopsies. Therefore, ERG immunohistochemistry is an important adjunctive tool for pathophysiological studies on ERG gene fusions, and might support the pathological diagnosis of adenocarcinoma in a subset of prostate needle biopsies.
Improved targeted therapies are needed to combat metastatic prostate cancer. Here, we report the identification of the spleen kinase SYK as a mediator of metastatic dissemination in zebrafish and mouse xenograft models of human prostate cancer. Although SYK has not been implicated previously in this disease, we found that its expression is upregulated in human prostate cancers and associated with malignant progression. RNAi-mediated silencing prevented invasive outgrowth in vitro and bone colonization in vivo, effects that were reversed by wild-type but not kinase-dead SYK expression. In the absence of SYK expression, cell surface levels of the progression-associated adhesion receptors integrin a2b1 and CD44 were diminished. RNAimediated silencing of a2b1 phenocopied SYK depletion in vitro and in vivo, suggesting an effector role for a2b1 in this setting. Notably, pharmacologic inhibitors of SYK kinase currently in phase I-II trials for other indications interfered similarly with the invasive growth and dissemination of prostate cancer cells. Our findings offer a mechanistic rationale to reposition SYK kinase inhibitors for evaluation in patients with metastatic prostate cancer. Cancer Res; 75(1); 230-40. Ó2014 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.