Objective
To determine the incidence, predictors, and outcome of pneumothorax (PNX)/pneumomediastinum (PMD) in coronavirus disease 2019 (COVID-19) acute respiratory distress syndrome (ARDS).
Design
Observational study.
Setting
Tertiary-care university hospital.
Participants
One hundred sixteen consecutive critically ill, invasively ventilated patients with COVID-19 ARDS.
Interventions
The authors collected demographic, mechanical ventilation, imaging, laboratory, and outcome data. Primary outcome was the incidence of PNX/PMD. Multiple logistic regression analyses were performed to identify predictors of PNX/PMD.
Measurements and Main Results
PNX/PMD occurred in a total of 28 patients (24.1%), with 22 patients developing PNX (19.0%) and 13 developing PMD (11.2%). Mean time to development of PNX/PMD was 14 ± 11 days from intubation. The authors found no significant difference in mechanical ventilation parameters between patients who developed PNX/PMD and those who did not. Mechanical ventilation parameters were within recommended limits for protective ventilation in both groups. Ninety-five percent of patients with PNX/PMD had the Macklin effect (linear collections of air contiguous to the bronchovascular sheaths) on a baseline computed tomography scan, and tended to have a higher lung involvement at intensive care unit (ICU) admission (Radiographic Assessment of Lung Edema score 32.2 ± 13.4
v
18.7 ± 9.8 in patients without PNX/PMD, p = 0.08). Time from symptom onset to intubation and time from total bilirubin on day two after ICU admission were the only independent predictors of PNX/PMD. Mortality was 60.7% in patients who developed PNX/PMD versus 38.6% in those who did not (p = 0.04).
Conclusion
PNX/PMD occurs frequently in COVID-19 patients with ARDS requiring mechanical ventilation, and is associated with increased mortality. Development of PNX/PMD seems to occur despite use of protective mechanical ventilation and has a radiologic predictor sign.
TNF-alpha plays an important role in the natural history of rheumatoid arthritis (RA), a systemic disease characterized by endothelial activation and synovial involvement with bone erosions. Neuroendocrine signals contribute as well to RA, but their role is poorly understood. We measured in 104 RA patients and in an equal number of sex- and age-matched, healthy controls the blood levels of chromogranin A (CgA), a candidate marker linking the neuroendocrine system to TNF-alpha-mediated vascular inflammation. CgA levels were significantly higher in patients with RA and remained stable over time. High levels of CgA were significantly associated with severe extra-articular manifestations, namely pulmonary fibrosis, rheumatoid vasculitis, serositis, and peripheral neuropathy. RA sera curbed the response of human microvascular endothelial cells to TNF-alpha, as assessed by the expression of ICAM-1, the release of MCP-1/CCL2, and the export of nuclear high-mobility group box 1; the effect abated in the presence of anti-CgA antibodies. The efficacy of the blockade was significantly correlated with the CgA concentration in the serum. The recombinant aminoterminal portion of CgA, corresponding to residues 1-78, had similar inhibitory effects on endothelial cells challenged with TNF-alpha. Our results suggest that enhanced levels of CgA identify patients with extra-articular involvement and reveal a negative feedback loop that limits the activation of endothelial cells in RA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.