Capillary malformation-arteriovenous malformation (CM-AVM) is an autosomal-dominant disorder, caused by heterozygous RASA1 mutations, and manifesting multifocal CMs and high risk for fast-flow lesions. A limited number of patients have been reported, raising the question of the phenotypic borders. We identified new patients with a clinical diagnosis of CM-AVM, and patients with overlapping phenotypes. RASA1 was screened in 261 index patients with: CM-AVM (n = 100), common CM(s) (port-wine stain; n = 100), Sturge-Weber syndrome (n = 37), or isolated AVM(s) (n = 24). Fifty-eight distinct RASA1 mutations (43 novel) were identified in 68 index patients with CM-AVM and none in patients with other phenotypes. A novel clinical feature was identified: cutaneous zones of numerous small white pale halos with a central red spot. An additional question addressed in this study was the "second-hit" hypothesis as a pathophysiological mechanism for CM-AVM. One tissue from a patient with a germline RASA1 mutation was available. The analysis of the tissue showed loss of the wild-type RASA1 allele. In conclusion, mutations in RASA1 underscore the specific CM-AVM phenotype and the clinical diagnosis is based on identifying the characteristic CMs. The high incidence of fast-flow lesions warrants careful clinical and radiologic examination, and regular follow-up.
Summary
Background
Capillary malformation–arteriovenous malformation (CM‐AVM) syndrome is a rare syndrome with characteristic skin lesions that are associated with fast‐flow vascular malformations (FFVMs) in one‐third of patients. Few case series have been described, and none in Spain.
Aim
To identify the prevalence of dermatological parameters, FFVMs and associated features in a large series of patients with CM‐AVM.
Methods
We conducted an observational study of patients with CM‐AVM syndrome diagnosed in 15 Spanish hospitals over 3 years. The main clinical, radiological, genetic findings and associated diseases were analysed.
Results
In total, 64 patients were assessed. In 26.5% of cases, the diagnosis was incidental. In 75% of patients, there was one significantly larger macule, which we termed the ‘herald patch’. FFVMs were detected in 34% of the patients, with 30% located on the skin, 7.8% in the brain and in 1.5% in the spine. There was a positive family history in 65% of the 64 patients. Genetic analysis was performed for RASA1 mutations in 57 patients, of whom 42 (73%) had a positive result. All 4 patients tested for EPHB4 mutations had a positive result. No tumour lesions were detected in the series, except for five infantile haemangiomas.
Conclusions
Our data on clinical lesions, associated FFVM, family history and genetics are similar to those previously published in the literature. An extensive data analysis failed to demonstrate any statistically significant association between the presence of an FFVM and any clinical, familial or genetic parameter that could predict its onset, although a link between the presence of a herald patch on the midline face and the presence of a brain FFVM was observed. We did not detect any genotype–phenotype correlation.
This was a retrospective study with a limited number of patients. In the absence of confirmatory genetic testing and family history of the disease, dark-brown scale of the extensor surfaces and the absence of palmoplantar hyperlinearity appear to be the most reliable clinical findings supporting a diagnosis of XLI. Dermatologists should be aware of the high prevalence of ADHD and epilepsy in patients with nonsyndromic XLI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.