The influence of aeration, stimng conditions, and the addition of furfural on the yield and productivity of furfural -furfuryl alcohol bioconversion by the yeast strain Succhuromyces cereuisiue 354 was investigated. The formation of furfuryl alcohol increases up to 32 hours of incubation corresponding to the addition of furfural, while the cell growth essentially ceased at 20 hours. The conversion of furfural into furfuryl alcohol under anaerobic and low aeration conditions was 70%, and the productivity 0.5 g .1-' . h-*, when the final concentration of furfural amounted to 35 g . 1-'.
The industrial Leuconostoc strain B/110-1-2 producing dextran and dextran derivatives was taxonomically identified by 16S rRNA as L. citreum. Its dextransucrase enzymes were characterized according to their cellular location and reaction specificity. In the presence of sucrose, the strain B/110-1-2 produced two cell-associated dextransucrases (31.54% of the total glucosyltransferase activity) with molecular weights of 160 and 240 kDa and a soluble dextransucrase (68.46%) at 160-180 kDa. Two open reading frames (ORF) coding for L. citreum strain B/110-1-2 dextransucrases were identified. One of them shared a 52% identity with the alternansucrase ASR of L. citreum NRRL B-1355 and with a putative annotated alternansucrase sequence found in the genome of L. citreum KM20. The structural analysis (HPAEC-PAD, HPSEC, and (13)C-NMR) of the polymer and oligodextrans produced by the B/110-1-2 dextransucrases suggest this novel glucansucrase has specificity similar to a dextransucrase but not to an alternansucrase, producing a soluble linear dextran with glucose molecules linked mainly in α-1,6 and α-1,3 with α-1,4 branches. These results enhance the understanding of this industrially significant strain and will aid in distinguishing between physiologically similar Leuconostoc spp. strains.
The best yields and productivities of 0.38 g . g-' and 0.35 g . I-' h-I, respectively, for the propionic acid production in a batch system using sugar-cane final molasses as carbon source were obtained when an initial TRS concentration of 50 g . I-' was used.It was obvious that this process is severely inhibited by the acids produced and the most drastic effect (p = 0) was at a TVA concentration near to 250 mmol . I-', independently of the initial TRS concentration employed. A generalizated equation of noncompetitive inhibition was adjusted:and kinetic inhibition constants for each initial TRS concentration studied were estimated.
Fed batch fermentation was carried out for the dextransucrase enzyme production from Leuconostoc mesenteroides and the production was scale-up using oxygen transfer criteriuom. It was found that in 5 L vessel fermentation capacity, the best agitation speed was 225 min-1 and aeration rate was 0.15 vvm, obtaining dextransucrase activity of 127 DSU/mL.. The maximum enzyme production velocity coincide with the maximum growth velocity between 6 and 7 h of fermentation, which confirmed that dextransucrase production was associated with microbial growth. High enzyme yields were achieved during scale up based on oxygen transfer rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.