Titania (TiO 2 ) based coatings are ceramic products with unique properties that make them widely applicable (e.g. in automotive industry, optoelectronics, chemical processing or medicine). Atmospheric plasma spray process enables to deposit TiO 2 with addition of NiAl feedstock material which has an influence on coating cohesion and adhesion to substrate. However, the literature and technical notes give little information about parameters of spraying of TiO 2 -10 wt.% NiAl feedstock powders enables producing coating without nonuniformities including cracks and delamination form substrate. The aim of the work was to verify the parameters of plasma spraying by evaluation of the morphology and properties of manufactured the TiO 2 -10 wt.% NiAl coatings. Titania based coatings were deposited by means of atmospheric plasma sprayed on steel substrate using TiO 2 -10 wt.% NiAl feedstock powders. Morphology and microstructure were examined using light optical microscope (LOM) and scanning electron microscope (SEM). Coating chemical composition were analysed by means of SEM-EDS method. Coating surface topography and Knoop microhardness were determined. Porosity and thickness were evaluated by using quantities image analysis programme. Plasma spraying parameters used in our research allow to obtain uniform coating without cracks and delamination at coating-substrate interface. It acknowledges that uniformity of coating technological properties as well manufactured coatings can be put to wear tests, such as high temperature oxidation, corrosion, erosion or cavitation erosion resistance evaluation.
Atmospheric plasma spray (APS) wear-resistant coatings are popular in mechanical designing for increasing the operation time of machine elements. APS enables the deposition of ceramic, metallic, and cermet coatings to ameliorate the effects of wear that cause most of the failures of machine elements. The aim of the paper was to investigate the influence of the coating thickness of TiO2-10 wt% NiAl on abrasive, sliding, and cavitation erosion resistance. Titania based coatings were deposited by means of APS onto a mild steel substrate using TiO2-10 wt% NiAl feedstock material. The coatings had thicknesses of approximately 50, 100, and 200 µm. The morphology and microstructure of the coatings were examined using a light optical microscope (LOM) and scanning electron microscope (SEM). The as-deposited surface topography and hardness of the coatings were determined. The porosity and thickness were evaluated by using quantities image analysis software. Cavitation erosion tests were performed according to ASTM G32 (vibratory apparatus) and ASTM G134 (cavitating liquid jet). Abrasive and sliding wear tests were conducted using a three body abrasive tester and ball-on-disc apparatus, respectively. Generally the thickest coating presents an increase in resistance to sliding wear and cavitation erosion over the thinnest cermet coating.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.