There is no well-known vaccine for coronavirus disease (COVID-19) with 100% efficiency. COVID-19 patients suffer from a lung infection, where lung-related problems can be effectively diagnosed with image techniques. The golden test for COVID-19 diagnosis is the RT-PCR test, which is costly, time-consuming and unavailable for various countries. Thus, machine learning-based tools are a viable solution. Here, we used a labelled chest X-ray of three categories, then performed data cleaning and augmentation to use the data in deep learning-based convolutional neural network (CNN) models. We compared the performance of different models that we gradually built and analyzed their accuracy. For that, we used 2905 chest X-ray scan samples. We were able to develop a model with the best accuracy of 97.44% for identifying COVID-19 using X-ray images. Thus, in this paper, we attested the feasibility of efficiently applying machine learning (ML) based models for medical image classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.