Abstract. Plastic is the third world’s most produced material by industry (after concrete and steel), but people recycle only 9% of plastic that they have used. The other parts are either burned or accumulated in landfills and in the environment, the latter being the cause of many serious consequences, in particular when considering a long-term scenario. A significant part the plastic waste is dispersed in the aquatic environment, having a dramatic impact on the aquatic flora and fauna. This motivated several works aiming at the development of methodologies and automatic or semi-automatic tools for the plastic pollution detection, in order to enable and facilitate its recovery. This paper deals with the problem of plastic waste automatic detection in the fluvial and aquatic environment. The goal is that of exploiting the well-recognized potential of machine learning tools in object detection applications. A machine learning tool, based on random forest classifiers, has been developed to properly detect plastic objects in multi-spectral imagery collected by an unmanned aerial vehicle (UAV). In the developed approach, the outcome is determined by the combination of two random forest classifiers and of an area-based selection criterion. The approach is tested on 154 images collected by a multi-spectral proximity sensor, namely the MAIA-S2 camera, in a fluvial environment, on the Arno river (Italy), where an artificial controlled scenario was created by introducing plastic samples anchored to the ground. The obtained results are quite satisfactory in terms of object detection accuracy and recall (both higher than 98%), while presenting a remarkably lower performance in terms of precision and quality. The overall performance appears also to be dependent on the UAV flight altitude, being worse at higher altitudes, as expected.
Abstract. Most of the anthropic pollution arriving to seas and oceans is carried by rivers, leading to a dramatic impact on the aquatic flora and fauna. Hence, several strategies have already been considered to reduce the use of plastic (and non biodegradable) objects, fostering recycling, detect litter in the environment, and catch it. This work aims at implementing a litter detection approach usable also in urban areas, hence considering a mini-UAV (Unmanned Aerial Vehicle) in order to reduce the issues related to flight restrictions. The implemented strategy exploits a high resolution map of the area of interest, a properly trained deep learning litter object detector, and a vision based localization system, which allows to remarkably reduce the positioning error of the UAV navigation system, in order to provide estimates of the litter object positions with an accuracy at decimeter level for objects not too far from locations recognizable in the map.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.