In this work, a non-isothermal electroosmotic flow of two immiscible fluids within a uniform microcapillary is theoretically studied. It is considered that there is an annular layer of a non-Newtonian liquid, whose behavior follows the power-law model, adjacent to the inside wall of the capillary, which in turn surrounds an inner flow of a second conducting liquid that is driven by electroosmosis. The inner fluid flow exerts an interfacial force, dragging the annular fluid due to shear and Maxwell stresses at the interface between the two fluids. Because the Joule heating effect may be present in electroosmotic flow (EOF), temperature gradients can appear along the microcapillary, making the viscosity coefficients of both fluids and the electrical conductivity of the inner fluid temperature dependent. The above makes the variables of the flow field in both fluids, velocity, pressure, temperature and electric fields, coupled. An additional complexity of the mathematical model that describes the electroosmotic flow is the nonlinear character due to the rheological behavior of the surrounding fluid. Therefore, based on the lubrication theory approximation, the governing equations are nondimensionalized and simplified, and an asymptotic solution is determined using a regular perturbation technique by considering that the perturbation parameter is associated with changes in the viscosity by temperature effects. The principal results showed that the parameters that notably influence the flow field are the power-law index, an electrokinetic parameter (the ratio between the radius of the microchannel and the Debye length) and the competition between the consistency index of the non-Newtonian fluid and the viscosity of the conducting fluid. Additionally, the heat that is dissipated trough the external surface of the microchannel and the sensitivity of the viscosity to temperature changes play important roles, which modify the flow field.
In this study, the isothermal electroosmotic flow of two immiscible electrical conducting fluids within a uniform circular microcapillary was theoretically examined. It was assumed that an annular layer of liquid adjacent to the inside wall of the capillary exists, and this in turn surrounds the inner flow of a second liquid. The theoretical analysis was performed by using the linearized Poisson-Boltzmann equations, and the momentum equations for both fluids were analytically solved. The interface between the two fluids was considered uniform, hypothesis which is only valid for very small values of the capillary number, and shear and Maxwell stresses were considered as the boundary condition. In addition, a zeta potential difference and a charge density jump were assumed at the interface. In this manner, the electroosmotic pumping is governed by the previous interfacial effects, a situation that has not previously been considered in the specialized literature. The simplified equations were nondimensionalized, and analytical solutions were determined to describe the electric potential distribution and flow field in both the fluids. The solution shows the strong influence of several dimensionless parameters, such as μr, εr, w , and sf Q , and 1,2 , on the volumetric flow. The parameters represent the ratio of viscosity, the ratio of electric permittivity of both fluids, the dimensionless zeta potential of the microcapillary wall, the dimensionless charge density jump and charge density between both fluids, and the electrokinetic parameters, respectively.
Sulfide released in the environment, due to high toxicity, even at low concentrations, may lead to serious environmental and health impacts. Therefore, is mandatory to develop highly sensitive, practical and inexpensive methods for detecting sulfide. Some of these analytical approaches are based on the methylene blue (MB) reaction, which has been successfully used in modified electrodes (MEs) development. MB-MEs hold promise as tools for detecting this electroactive anion. This study developed and characterized silica-niobiummethylene blue (SNMB) MEs, and evaluated their performance in sulfide determination through chronoamperometric and voltammetric techniques, under different experimental conditions. Within optimum conditions, the SNMB-MEs exhibited a linear response to sulfide anions from 7.6 to 63.4 μM, (r = 0.9979), whereas the detection and quantification limits were 2.03 mM and 6.77 mM, respectively. These results confirm the potential applicability of SNMB-ME for sulfide analysis and monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.