Breast carcinoma is the leading cause of cancer-related mortality in women worldwide with an estimated 1.38 million new cases and 458,000 deaths in 2008 alone1. This malignancy represents a heterogeneous group of tumours with characteristic molecular features, prognosis, and responses to available therapy2–4. Recurrent somatic alterations in breast cancer have been described including mutations and copy number alterations, notably ERBB2 amplifications, the first successful therapy target defined by a genomic aberration5. Prior DNA sequencing studies of breast cancer genomes have revealed additional candidate mutations and gene rearrangements 6–10. Here we report the whole-exome sequences of DNA from 103 human breast cancers of diverse subtypes from patients in Mexico and Vietnam compared to matched-normal DNA, together with whole-genome sequences of 22 breast cancer/normal pairs. Beyond confirming recurrent somatic mutations in PIK3CA11, TP536, AKT112, GATA313, and MAP3K110, we discovered recurrent mutations in the CBFB transcription factor gene and deletions of its partner RUNX1. Furthermore, we have identified a recurrent MAGI3-AKT3 fusion enriched in triple-negative breast cancer lacking estrogen and progesterone receptors and ERBB2 expression. The Magi3-Akt3 fusion leads to constitutive activation of Akt kinase, which is abolished by treatment with an ATP-competitive Akt small-molecule inhibitor.
Intellectual disability (ID), often attributed to autosomal-recessive mutations, occurs in 40% of autism spectrum disorders (ASDs). For this reason, we conducted a genome-wide analysis of runs of homozygosity (ROH) in simplex ASD-affected families consisting of a proband diagnosed with ASD and at least one unaffected sibling. In these families, probands with an IQ ≤ 70 show more ROH than their unaffected siblings, whereas probands with an IQ > 70 do not show this excess. Although ASD is far more common in males than in females, the proportion of females increases with decreasing IQ. Our data do support an association between ROH burden and autism diagnosis in girls; however, we are not able to show that this effect is independent of low IQ. We have also discovered several autism candidate genes on the basis of finding (1) a single gene that is within an ROH interval and that is recurrent in autism or (2) a gene that is within an autism ROH block and that harbors a homozygous, rare deleterious variant upon analysis of exome-sequencing data. In summary, our data suggest a distinct genetic architecture for participants with autism and co-occurring intellectual disability and that this architecture could involve a role for recessively inherited loci for this autism subgroup.
The antineoplastic prodrug Cloretazine exerts its cytotoxicity via a synergism between 2-chloroethylating and carbamoylating activities that are cogenerated upon activation in situ. Cloretazine is reported here to inhibit the nucleotidyl transferase activity of purified human DNA polymerase β (Pol β), a principal enzyme of DNA base excision repair (BER). The 2-chloroethylating activity of Cloretazine alkylates DNA at the O6 position of guanine bases resulting in 2-chloroethoxyguanine monoadducts, which further react to form cytotoxic interstrand DNA crosslinks. Alkylated DNA is often repaired via BER in vivo. Inhibition of the polymerase activity of Pol β may account for some of the synergism between Cloretazine’s two reactive subspecies in cytotoxicity assays. This inhibition was only observed using agents with carbamoylating activity. Furthermore, while therapeutically relevant concentrations of Cloretazine inhibited the polymerase activity of Pol β, the enzyme’s lyase activity, which may also participate in BER, was not significantly inhibited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.