SUMMARY Enhancers control the correct temporal and cell type-specific activation of gene expression in higher eukaryotes. Knowing their properties, regulatory activity and targets is crucial to understand the regulation of differentiation and homeostasis. We use the FANTOM5 panel of samples covering the majority of human tissues and cell types to produce an atlas of active, in vivo transcribed enhancers. We show that enhancers share properties with CpG-poor mRNA promoters but produce bidirectional, exosome-sensitive, relatively short unspliced RNAs, the generation of which is strongly related to enhancer activity. The atlas is used to compare regulatory programs between different cells at unprecedented depth, identify disease-associated regulatory single nucleotide polymorphisms, and classify cell type-specific and ubiquitous enhancers. We further explore the utility of enhancer redundancy, which explains gene expression strength rather than expression patterns. The online FANTOM5 enhancer atlas represents a unique resource for studies on cell type-specific enhancers and gene regulation.
Regulated transcription controls the diversity, developmental pathways and spatial organization of the hundreds of cell types that make up a mammal. Using single-molecule cDNA sequencing, we mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell lines and tissues to produce a comprehensive overview of mammalian gene expression across the human body. We find that few genes are truly ‘housekeeping’, whereas many mammalian promoters are composite entities composed of several closely separated TSSs, with independent cell-type-specific expression profiles. TSSs specific to different cell types evolve at different rates, whereas promoters of broadly expressed genes are the most conserved. Promoter-based expression analysis reveals key transcription factors defining cell states and links them to binding-site motifs. The functions of identified novel transcripts can be predicted by coexpression and sample ontology enrichment analyses. The functional annotation of the mammalian genome 5 (FANTOM5) project provides comprehensive expression profiles and functional annotation of mammalian cell-type-specific transcriptomes with wide applications in biomedical research.
Long non-coding RNAs (lncRNAs) are largely heterogeneous and functionally uncharacterized. Here, using FANTOM5 cap analysis of gene expression (CAGE) data, we integrate multiple transcript collections to generate a comprehensive atlas of 27,919 human lncRNA genes with high-confidence 5' ends and expression profiles across 1,829 samples from the major human primary cell types and tissues. Genomic and epigenomic classification of these lncRNAs reveals that most intergenic lncRNAs originate from enhancers rather than from promoters. Incorporating genetic and expression data, we show that lncRNAs overlapping trait-associated single nucleotide polymorphisms are specifically expressed in cell types relevant to the traits, implicating these lncRNAs in multiple diseases. We further demonstrate that lncRNAs overlapping expression quantitative trait loci (eQTL)-associated single nucleotide polymorphisms of messenger RNAs are co-expressed with the corresponding messenger RNAs, suggesting their potential roles in transcriptional regulation. Combining these findings with conservation data, we identify 19,175 potentially functional lncRNAs in the human genome.
The HAD (haloacid dehalogenase) superfamily includes phosphoesterases, ATPases, phosphonatases, dehalogenases, and sugar phosphomutases acting on a remarkably diverse set of substrates. The availability of numerous crystal structures of representatives belonging to diverse branches of the HAD superfamily provides us with a unique opportunity to reconstruct their evolutionary history and uncover the principal determinants that led to their diversification of structure and function. To this end we present a comprehensive analysis of the HAD superfamily that identifies their unique structural features and provides a detailed classification of the entire superfamily. We show that at the highest level the HAD superfamily is unified with several other superfamilies, namely the DHH, receiver (CheY-like), von Willebrand A, TOPRIM, classical histone deacetylases and PIN/FLAP nuclease domains, all of which contain a specific form of the Rossmannoid fold. These Rossmannoid folds are distinguished from others by the presence of equivalently placed acidic catalytic residues, including one at the end of the first core β-strand of the central sheet. The HAD domain is distinguished from these related Rossmannoid folds by two key structural signatures, a "squiggle" (a single helical turn) and a "flap" (a beta hairpin motif) located immediately downstream of the first β-strand of their core Rossmanoid fold. The squiggle and the flap motifs are predicted to provide the necessary mobility to these enzymes for them to alternate between the "open" and "closed" conformations. In addition, most members of the HAD superfamily contains inserts, termed caps, occurring at either of two positions in the core Rossmannoid fold. We show that the cap modules have been independently inserted into these two stereotypic positions on multiple occasions in evolution and display extensive evolutionary diversification independent of the core catalytic domain. The first group of caps, the C1 caps, is directly inserted into the flap motif and regulates access of reactants to the active site. The second group, the C2 caps, forms a roof over the active site, and access to their internal cavities might be in part regulated by the movement of the flap. The diversification of the cap module was a major factor in the exploration of a vast substrate space in the course of the evolution of this superfamily. We show that the HAD superfamily contains 33 major families distributed across the three superkingdoms of life. Analysis of the phyletic patterns suggests that at least five distinct HAD proteins are traceable to the last universal common ancestor (LUCA) of all extant organisms. While these prototypes diverged prior to the emergence Abbreviations used: HAD, haloacid dehalogenase; PNKP, polynucleotide kinase phosphatase; KDO 8-P, deoxy-Dmannose-octulosonate 8-phosphate; CTD, carboxyl-terminal domain; PNKP, polynucleotide kinase phosphatase; LUCA, last universal common ancestor.E-mail address of the corresponding author: aravind@ncbi.nlm.nih.gov of the LUCA, t...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.