SIR2014 is the latest program of the SIR suite for crystal structure solution of small, medium and large structures. A variety of phasing algorithms have been implemented, both ab initio (standard or modern direct methods, Patterson techniques, Vive la Différence) and non-ab initio (simulated annealing, molecular replacement). The program contains tools for crystal structure refinement and for the study of three-dimensional electron-density maps via suitable viewers.
SIR2011, the successor of SIR2004, is the latest program of the SIR suite. It can solve ab initio crystal structures of small-and medium-size molecules, as well as protein structures, using X-ray or electron diffraction data. With respect to the predecessor the program has several new abilities: e.g. a new phasing method (VLD) has been implemented, it is able to exploit prior knowledge of the molecular geometry via simulated annealing techniques, it can use molecular replacement methods for solving proteins, it includes new tools like free lunch and new approaches for electron diffraction data, and it visualizes threedimensional electron density maps. The graphical interface has been further improved and allows the straightforward use of the program even in difficult cases.
We report on the measurement of the ^{7}Be(n,p)^{7}Li cross section from thermal to approximately 325 keV neutron energy, performed in the high-flux experimental area (EAR2) of the n_TOF facility at CERN. This reaction plays a key role in the lithium yield of the big bang nucleosynthesis (BBN) for standard cosmology. The only two previous time-of-flight measurements performed on this reaction did not cover the energy window of interest for BBN, and they showed a large discrepancy between each other. The measurement was performed with a Si telescope and a high-purity sample produced by implantation of a ^{7}Be ion beam at the ISOLDE facility at CERN. While a significantly higher cross section is found at low energy, relative to current evaluations, in the region of BBN interest, the present results are consistent with the values inferred from the time-reversal ^{7}Li(p,n)^{7}Be reaction, thus yielding only a relatively minor improvement on the so-called cosmological lithium problem. The relevance of these results on the near-threshold neutron production in the p+^{7}Li reaction is also discussed.
A new program for molecular replacement, REMO, has been written. In the rotation step, the orientation of the model molecule is found by rotating the weighted reciprocal lattice of the protein with respect to the calculated transform of the model structure: the fitting is searched in the reciprocal space. The space group of the model structure is assumed to be the symmorphic variant of the protein space group. The algebra necessary to optimize the correlation factor between protein and model structure-factor moduli is described. The oriented model molecule is located by using the correlation function coupled with a translation function calculated by fast Fourier transforms. REMO has been successfully applied to a variety of test problems and extensively compared with other currently available molecular replacement programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.