Abstract. The neutron time-of-flight facility n TOF features a white neutron source produced by spallation through 20 GeV/c protons impinging on a lead target. The facility, aiming primarily at the measurement of neutron-induced reaction cross sections, was operating at CERN between 2001 and 2004, and then underwent a major upgrade in 2008. This paper presents in detail all the characteristics of the new neutron beam in the currently available configurations, which correspond to two different collimation systems and two choices of neutron moderator. The characteristics discussed include the intensity and energy dependence of the neutron flux, the spatial profile of the beam, the in-beam background components and the energy resolution/broadening. The discussion of these features is based on dedicated measurements and Monte Carlo simulations, and includes estimations of the systematic uncertainties of the mentioned quantities.
The aim of this guidance is to provide recommendations to clinicians and other interested parties on chronic urticaria in children. The Italian Society for Pediatrics (SIP), the Italian Society for Allergy and Immunology (SIAIP), the Italian Society for Pediatric dermatology (SIDerP) convened a multidisciplinary panel that prepared clinical guidelines for diagnosis and management of chronic urticaria in childhood. Key questions on epidemiology, natural history, diagnosis, and management were developed. The literature was systematically searched and evaluated, recommendations were rated and algorithms for diagnosis and treatment were developed. The recommendations focus on identification of diseases and comorbidities, strategies to recognize triggering factors, improvement of treatment by individualized care.
The gettering efficiency of copper and platinum by cavities formed in silicon after high dose helium implantation and thermal processing has been investigated. The formation of helium bubbles and their evolution into cavities has been investigated by transmission electron microscopy; the measured values of void density, diameter and the width of the void layer can be interpreted by assuming a simple coalescence model. Metal impurities intentionally introduced in silicon by ion implantation are efficiently gettered inside these cavities, probably due to the large amount of unsatured bonds at the void internal surface. Processing at temperatures higher than 1000oC causes a release of the trapped metal atoms which can be gettered again by repeating the process. The method is demonstrated on real devices such as large area diodes (a particle detector) and bipolar transistors. The capability to localize in depth and across the wafer surface on the gettering sites allows the development of a new gettering engineering.
We report on the measurement of the ^{7}Be(n,p)^{7}Li cross section from thermal to approximately 325 keV neutron energy, performed in the high-flux experimental area (EAR2) of the n_TOF facility at CERN. This reaction plays a key role in the lithium yield of the big bang nucleosynthesis (BBN) for standard cosmology. The only two previous time-of-flight measurements performed on this reaction did not cover the energy window of interest for BBN, and they showed a large discrepancy between each other. The measurement was performed with a Si telescope and a high-purity sample produced by implantation of a ^{7}Be ion beam at the ISOLDE facility at CERN. While a significantly higher cross section is found at low energy, relative to current evaluations, in the region of BBN interest, the present results are consistent with the values inferred from the time-reversal ^{7}Li(p,n)^{7}Be reaction, thus yielding only a relatively minor improvement on the so-called cosmological lithium problem. The relevance of these results on the near-threshold neutron production in the p+^{7}Li reaction is also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.