A new Micromegas manufacturing technique, based on kapton etching technology, has been developed recently, resulting in further improvement of the characteristics of the detector, such as uniformity and stability. Excellent energy resolution has been obtained, reaching 11% FWHM for the 5.9 keV photon peak of the 55 Fe X-ray source and 1.8% FWHM (with possible evidence of less than 1%) for the 5.5 MeV alpha peak of the 241 Am source. The new Microbulk detector shows several advantages like flexible structure, low material and high radio-purity, opening thus new possibilities for both accelerator and low counting-rate experiments. The detector has already been used in CAST and n-TOF, while it is being tested for future neutrinoless double-beta decay experiments like NEXT. Details of the production of several types of Microbulk detectors will be described. First benchmark results will be presented, demonstrating the enhanced performance of Microbulk detectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.