Abstract. The neutron time-of-flight facility n TOF features a white neutron source produced by spallation through 20 GeV/c protons impinging on a lead target. The facility, aiming primarily at the measurement of neutron-induced reaction cross sections, was operating at CERN between 2001 and 2004, and then underwent a major upgrade in 2008. This paper presents in detail all the characteristics of the new neutron beam in the currently available configurations, which correspond to two different collimation systems and two choices of neutron moderator. The characteristics discussed include the intensity and energy dependence of the neutron flux, the spatial profile of the beam, the in-beam background components and the energy resolution/broadening. The discussion of these features is based on dedicated measurements and Monte Carlo simulations, and includes estimations of the systematic uncertainties of the mentioned quantities.
FLUKA is a general purpose Monte Carlo code able to describe the transport and interaction of any particle and nucleus type in complex geometries over an energy range extending from thermal neutrons to ultrarelativistic hadron collisions. It has many different applications in accelerator design, detector studies, dosimetry, radiation protection, medical physics, and space research. In 2019, CERN and INFN, as FLUKA copyright holders, together decided to end their formal collaboration framework, allowing them henceforth to pursue different pathways aimed at meeting the evolving requirements of the FLUKA user community, and at ensuring the long term sustainability of the code. To this end, CERN set up the FLUKA.CERN Collaboration1. This paper illustrates the physics processes that have been newly released or are currently implemented in the code distributed by the FLUKA.CERN Collaboration2 under new licensing conditions that are meant to further facilitate access to the code, as well as intercomparisons. The description of coherent effects experienced by high energy hadron beams in crystal devices, relevant to promising beam manipulation techniques, and the charged particle tracking in vacuum regions subject to an electric field, overcoming a former lack, have already been made available to the users. Other features, namely the different kinds of low energy deuteron interactions as well as the synchrotron radiation emission in the course of charged particle transport in vacuum regions subject to magnetic fields, are currently undergoing systematic testing and benchmarking prior to release. FLUKA is widely used to evaluate radiobiological effects, with the powerful support of the Flair graphical interface, whose new generation (Available at http://flair.cern) offers now additional capabilities, e.g., advanced 3D visualization with photorealistic rendering and support for industry-standard volume visualization of medical phantoms. FLUKA has also been playing an extensive role in the characterization of radiation environments in which electronics operate. In parallel, it has been used to evaluate the response of electronics to a variety of conditions not included in radiation testing guidelines and standards for space and accelerators, and not accessible through conventional ground level testing. Instructive results have been obtained from Single Event Effects (SEE) simulations and benchmarks, when possible, for various radiation types and energies. The code has reached a high level of maturity, from which the FLUKA.CERN Collaboration is planning a substantial evolution of its present architecture. Moving towards a modern programming language allows to overcome fundamental constraints that limited development options. Our long term goal, in addition to improving and extending its physics performances with even more rigorous scientific oversight, is to modernize its structure to integrate independent contributions more easily and to formalize quality assurance through state-of-the-art software deployment techniques. This includes a continuous integration pipeline to automatically validate the codebase as well as automatic processing and analysis of a tailored physics-case test suite. With regard to the aforementioned objectives, several paths are currently envisaged, like finding synergies with Geant4, both at the core structure and interface level, this way offering the user the possibility to run with the same input different Monte Carlo codes and crosscheck the results.
We report on the measurement of the ^{7}Be(n,p)^{7}Li cross section from thermal to approximately 325 keV neutron energy, performed in the high-flux experimental area (EAR2) of the n_TOF facility at CERN. This reaction plays a key role in the lithium yield of the big bang nucleosynthesis (BBN) for standard cosmology. The only two previous time-of-flight measurements performed on this reaction did not cover the energy window of interest for BBN, and they showed a large discrepancy between each other. The measurement was performed with a Si telescope and a high-purity sample produced by implantation of a ^{7}Be ion beam at the ISOLDE facility at CERN. While a significantly higher cross section is found at low energy, relative to current evaluations, in the region of BBN interest, the present results are consistent with the values inferred from the time-reversal ^{7}Li(p,n)^{7}Be reaction, thus yielding only a relatively minor improvement on the so-called cosmological lithium problem. The relevance of these results on the near-threshold neutron production in the p+^{7}Li reaction is also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.