The problem considered here is concerned with small disturbances of plane Couette flow. As is usual in such problems it is assumed that the disturbance velocities are sufficiently small to allow the Navier-Stokes equations to be linearized. There results a special case of the well-known Orr-Sommerfeld equation and this is solved by an exact method using a digital computer. The problem has previously been considered by several authors, mostly using approximate methods and their results have been compared where possible with those obtained here. It was possible to proceed to values of αR not in excess of 1000 (α being the wave-number of the disturbance and R the Reynolds number of the basic flow), and the results tend to confirm the belief that Couette flow is stable at all Reynolds numbers.
The stability of plane Couette flow with a heated lower plate is considered with respect to a two-dimensional infinitesimal disturbance. The eigenvalues are found with the aid of a digital computer as the latent roots of a matrix. Neutral stability curves for various Prandtl numbers at Reynolds numbers up to 150 are obtained by a second method. It is found that the principle of the exchange of stabilities does not hold for this problem. With the aid of Squire’s transformation the conclusion is drawn that all fluids will become unstable at the same value of the Rayleigh number irrespective of whether shear is present or not.
In an earlier paper (Gallagher & Mercer 1962) the numerical results for the first eigenvalue of the problem of plane couette flow were given. The higher eigen-values are now examined and are found to be in agreement with those of Southwell & Chitty (1930), but to disagree with those of Grohne (1954).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.