Let Tn denote a tree with n nodes that is rooted at node r. (For definitions not given here see [4] or [10].) The altitude of a node u in Tn is the distance α = α (u, Tn) between r and u in Tn. The width of Tn at altitude is the number Wk = Wk(Tn) of nodes at altitude in Tn, where = 0, 1, …
Let Tn denote a tree with n(≧ 2) labelled points: we assume Tn is rooted at a given point x, say the point labelled 1 (see [3] for definitions not given here). If we remove some edge e of Tn, then Tn falls into two subtrees one of which, say Tk, contains the root x. If k ≧ 2 we can remove some edge of Tk and obtain an even smaller subtree of Tn that contains x. If we repeat this process we will eventually obtain the subtree consisting of x itself. Let λ = λ(Tn) denote the number of edges removed from Tn before the root x is isolated. Our main object here is to determine the expected value μ(n) and variance σ2(n) of λ(Tn) under the assumptions (1) Tn is chosen at random from the set of nn−2 trees with n labelled points that are rooted at point x, and (2) at each stage the edge removed is chosen at random from the edges of the remaining subree containing x. It follows from our results that μ(n) ~ (½πn)½ and (2−½π)n ~ (2−½π)n as n tends to infinity. We also consider the corresponding problem for forests of rooted trees and for trees in which the degree of the root is specified. We are indebted to Professor Alistair Lachlan for suggesting the original problem to us.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.