In most crop species, growth of the shoot is more sensitive to salt stress than root growth. Avocado [Persea americana Mill.] is very sensitive to NaCl stress. Even low concentrations of salt (15 mm) inhibit tree growth and decrease productivity. Observations in experimental orchards have suggested that root growth in avocado might be more restricted by salinity than shoot growth. In the present study, we evaluated quantitatively the inhibitory effects of salt stress on growth of the avocado root in comparison to the shoot. Seedling plants of the West-Indian rootstock `Degania 117' were grown in complete nutrient solution containing 1, 5, 15, or 25 mm NaCl. The threshold NaCl concentration causing root and shoot growth reduction occurred between 5 and 15 mm. At all concentrations, root growth was much more sensitive to salinity than shoot growth. A concentration of 15 mm NaCl, which did not affect the rate of leaf emergence on the plant and decreased leaf biomass production only 10%, induced a 43% reduction in the rate of root elongation and decreased root volumetric growth rate by 33%. Under 25 mm NaCl, leaf biomass production, leaf initiation rate and leaf elongation rate were reduced 19.5%, 12%, and 5%, respectively, while root volumetric growth and root elongation rate were reduced 65% and 75%, respectively. This strong root growth inhibition is expected to influence the whole plant and therefore root growth under salinity should be considered as an important criterion for rootstocks' tolerance to NaCl.
Spatial distributions of growth and of the concentration of some inorganic nutrient elements were analyzed in developing leaves of maize (Zea mays L.). Growth was analyzed by pinprick experiments with numerical analysis to characterize fields of velocity and relative elemental elongation rate. Inductively coupled plasma and atomic emission spectroscopy were used to measure nutrients extracted from segments of leaf tissue collected by position. Leaves 7 and 8, both elongating 3 millimeters per hour had maximum relative elemental growth rates of 0.06 to 0.08 millimeters per hour with maximum rates 20 to 50 millimeters from the node and cessation of growth by 90 millimeters from the node. Spatial distribution of dry weight density revealed that the rate of biomass deposition was maximum in the most rapidly expanding region and continued beyond the elongation zone. The nutrient elements K, Cl, Ca, Mg, and P showed different distribution patterns of ion density (on a dry weight basis). K and Cl had minimal density in the leaf tips; K density was maximum in the growing region, whereas Cl density was maximum at the region of growth cessation. Ca, Mg, and P had relatively high densities at the base of the elongation zone near the node and also in the tip regions. Near the node, P and Mg densities were higher in the young, growing leaves, whereas Ca density near the node was higher in older leaves that had completed elongation. Deposition rates of all nutrients were greatest in the region of maximum elongation rate.An understanding of the physiology of growth requires knowledge of the spatial distribution of growth within expanding organs and, on the same spatial scale, knowledge of the distribution of growth-associated chemical and physical attributes of the tissue (3,22). In the past decade, growth kinematics (3, 21, 22) have been analyzed to describe quantitatively the effects of environmental variables on development of roots and leaves. In roots, the pattems of growth velocities and REG2 rates have been described for different temperatures (15), levels of water stress (20), and salinity (27). In monocot leaves, growth pattems have been described for different genotypes (24), developmental stages (18), and irradiances (17).The growth rate pattem is also related to the accumulation of plant nutrients in expanding tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.