SUMMARYSoil flooding, which results in a decline in the availability of oxygen to submerged organs, negatively affects the growth and productivity of most crops. Although tomato (Solanum lycopersicum) is known for its sensitivity to waterlogging, its ability to produce adventitious roots (ARs) increases plant survival when the level of oxygen is decreased in the root zone. Ethylene entrapment by water may represent the first warning signal to the plant indicating waterlogging. We found that treatment with the ethylene biosynthesis inhibitor aminoethoxyvinylglycine (AVG) and the auxin transport inhibitor 1-naphthylphthalamic acid (NPA) resulted in a reduction of AR formation in waterlogged plants. We observed that ethylene, perceived by the Never Ripe receptor, stimulated auxin transport. In a process requiring the Diageotropica gene, auxin accumulation in the stem triggered additional ethylene synthesis, which further stimulated a flux of auxin towards to the flooded parts of the plant. Auxin accumulation in the base of the plant induces growth of pre-formed root initials. This response of tomato plants results in a new root system that is capable of replacing the original one when it has been damaged by submergence.
BACKGROUND: In recent years the consumption of minimally processed leafy vegetables has been increasing. At the same time food quality and its effects on human health have become crucial issues. Since selenium (Se) is an important microelement due to its ability to defend human organisms against free radicals, we investigated the effects of Se on chicory and lettuce production, and assessed the feasibility of a floating system as a method of producing Se-enriched vegetables.
The accumulation of selected caffeic acid derivatives (CADs), in particular rosmarinic acid (RA), was investigated in different tissues (leaves, roots and plantlet shoots) of sweet basil (Ocimum basilicum L.) plants grown either in vitro or in hydroponic culture (floating system) under greenhouse conditions. Two cultivars with green leaves (Genovese and Superbo) and one with purple leaves (Dark Opal) were tested. The content of CADs in HCl-methanol extracts was determined by HPLC. LC-MS and LC-MS-MS were used to confirm the identification of the metabolites of interest. Apart from rosmarinic acid (RA) and a methylated form of this substance, no other CADs were detected at significant level in any of the analyzed samples. The content of RA ranged approximately from 4 to 63 mg/g DW, depending on the growing system. The highest RA content was found during the in vitro multiplication, in the acclimatized plants and in the roots of hydroponically-grown seedlings at full bloom. In vitro, 6-benzyladenine reduced the accumulation of RA in purple-leaf Dark Opal cultivar, but an opposite effect of this growth regulator was observed in the green-leaf genotypes. Our findings suggest the possibility to scale-up RA production by means of in vitro or hydroponic culture of sweet basil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.