Pridopidine has demonstrated improvement in Huntington Disease (HD) motor symptoms as measured by secondary endpoints in clinical trials. Originally described as a dopamine stabilizer, this mechanism is insufficient to explain the clinical and preclinical effects of pridopidine. This study therefore explored pridopidine’s potential mechanisms of action. The effect of pridopidine versus sham treatment on genome-wide expression profiling in the rat striatum was analysed and compared to the pathological expression profile in Q175 knock-in (Q175 KI) vs Q25 WT mouse models. A broad, unbiased pathway analysis was conducted, followed by testing the enrichment of relevant pathways. Pridopidine upregulated the BDNF pathway (P = 1.73E-10), and its effect on BDNF secretion was sigma 1 receptor (S1R) dependent. Many of the same genes were independently found to be downregulated in Q175 KI mice compared to WT (5.2e-7 < P < 0.04). In addition, pridopidine treatment upregulated the glucocorticoid receptor (GR) response, D1R-associated genes and the AKT/PI3K pathway (P = 1E-10, P = 0.001, P = 0.004, respectively). Pridopidine upregulates expression of BDNF, D1R, GR and AKT/PI3K pathways, known to promote neuronal plasticity and survival, as well as reported to demonstrate therapeutic benefit in HD animal models. Activation of S1R, necessary for its effect on the BDNF pathway, represents a core component of the mode of action of pridopidine. Since the newly identified pathways are downregulated in neurodegenerative diseases, including HD, these findings suggest that pridopidine may exert neuroprotective effects beyond its role in alleviating some symptoms of HD.
TV‐46000 is a long‐acting subcutaneous antipsychotic that uses a novel copolymer drug delivery technology in combination with a well‐characterized molecule, risperidone, that is in clinical development as a treatment for schizophrenia. A population pharmacokinetic (PPK) modeling and simulation approach was implemented to identify TV‐46000 doses and dosing schedules for clinical development that would provide the best balance between clinical efficacy and safety. The PPK model was created by applying pharmacokinetic data from a phase 1 study of 97 patients with a diagnosis of schizophrenia or schizoaffective disorder who received either single or repeated doses of TV‐46000. The PPK model was used to characterize the complex release profile of the total active moiety (TAM; the sum of the risperidone and 9‐OH risperidone concentrations) concentration following subcutaneous injections of TV‐46000. The PK profile was best described by a double Weibull function of the in vivo release rate and by a 2‐compartment disposition and elimination model. Simulations were performed to determine TV‐46000 doses and dosing schedules that maintained a median profile of TAM concentrations similar to published TAM exposure following oral risperidone doses that have been correlated to a 40% to 80% dopamine‐D2 receptor occupancy therapeutic window. The simulations showed that therapeutic dose ranges for TV‐46000 are 50 to 125 mg for once‐monthly and 100 to 250 mg for the once every 2 months regimens. This PPK model provided a basis for prediction of patient‐specific exposure and dopamine‐D2 receptor occupancy estimates to support further clinical development and dose selection for the phase 3 studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.