Fish growth is strongly influenced by environmental and nutritional factors and changing culture conditions can help optimize it. The importance of early-life experience on the muscle phenotype later in life is well known. Here, we study the effects of 5 weeks of moderate and sustained swimming activity (5 BL s(-1)) in gilthead sea bream during early development. We analysed growth and body indexes, plasma IGF-I and GH levels, feed conversion, composition [proximate and isotopic ((15)N/(13)C)] and metabolic key enzymes (COX, CS, LDH, HOAD, HK, ALAT, ASAT) of white muscle. Moderate and continuous exercise in fingerlings of gilthead sea bream increased plasma IGF-I, whereas it reduced plasma GH. Under these conditions, growth rate improved without any modification to feed intake through an increase in muscle mass and a reduction in mesenteric fat deposits. There were no changes in the content and turnover of muscle proteins and lipid reserves. Glycogen stores were maintained, but glycogen turnover was higher in white muscle of exercised fish. A lower LDH/CS ratio demonstrated an improvement in the aerobic capacity of white muscle, while a reduction in the COX/CS ratio possibly indicated a functional adaptation of mitochondria to adjust to the tissue-specific energy demand and metabolic fuel availability in exercised fish. We discuss the synergistic effects of dietary nutrients and sustained exercise on the different mitochondrial responses.
Moderate exercise enhances fish growth, although underlying physiological mechanisms are not fully known. Here we performed a proteomic and metabolic study in white (WM) and red (RM) muscle of gilthead sea bream juveniles swimming at 1.5 body lengths per second. Continuous swimming for four weeks enhanced fish growth without increasing food intake. Exercise affected muscle energy stores by decreasing lipid and glycogen contents in WM and RM, respectively. Protein synthesis capacity (RNA/protein), energy use (estimated by lipid-δ(13)C and glycogen-δ(13)C), and enzymatic aerobic capacity increased in WM, while protein turnover (expressed by δ(15)N-fractionation) did not change. RM showed no changes in any of these parameters. 2D-PAGE analysis showed that almost 15% of sarcoplasmic protein spots from WM and RM differed in response to exercise, most being over-expressed in WM and under-expressed in RM. Protein identification by MALDI-TOF/TOF-MS and LC-MS/MS revealed exercise-induced enhancement of several pathways in WM (carbohydrate catabolism, protein synthesis, muscle contraction, and detoxification) and under-expression of others in RM (energy production, muscle contraction, and homeostatic processes). The mechanism underpinning the phenotypic response to exercise sheds light on the adaptive processes of fish muscles, being the sustained-moderate swimming induced in gilthead sea bream achieved mainly by WM, thus reducing the work load of RM and improving swimming performance and food conversion efficiency.
The endocrine system regulates growth mainly through the growth hormone (GH)/insulin-like growth factors (IGFs) axis and, although exercise promotes growth, little is known about its modulation of these factors. The aim of this work was to characterize the effects of 5 wk of moderate sustained swimming on the GH-IGFs axis in gilthead sea bream fingerlings. Plasma IGF-I/GH ratio and tissue gene expression of total IGF-I and three splice variants, IGF-II, three IGF binding proteins, two GH receptors, two IGF-I receptors, and the downstream molecules were analyzed. Fish under exercise (EX) grew more than control fish (CT), had a higher plasma IGF-I/GH ratio, and showed increased hepatic IGF-I expression (mainly IGF-Ia). Total IGF-I expression levels were similar in the anterior and caudal muscles; however, IGF-Ic expression increased with exercise, suggesting that this splice variant may be the most sensitive to mechanical action. Moreover, IGFBP-5b and IGF-II increased in the anterior and caudal muscles, respectively, supporting enhanced muscle growth. Furthermore, in EX fish, hepatic IGF-IRb was reduced together with both GHRs; GHR-II was also reduced in anterior muscle, while GHR-I showed higher expression in the two muscle regions, indicating tissue-dependent differences and responses to exercise. Exercise also increased gene and protein expression of target of rapamycin (TOR), suggesting enhanced muscle protein synthesis. Altogether, these data demonstrate that moderate sustained activity may be used to increase the plasma IGF-I/GH ratio and to potentiate growth in farmed gilthead sea bream, modulating the gene expression of different members of the GH-IGFs axis (i.e., IGF-Ic, IGF-II, IGFBP-5b, GHR-I, and TOR).
The influence of culture density on growth, stress system and metabolism has been assessed in A. regius juveniles submitted to different initial stocking densities (3, 7, 10 and 13 g L-1) for 40 days. On days 0, 12, 27 and 40 of the experiment, biometric parameters were measured. In addition, plasma, liver and muscle samples were taken for biochemical analysis at the end of experimental time. Our results showed better growth rates and feed utilization in those specimens held at high stocking densities when compared to those under low stocking densities. In addition, higher plasma cortisol, glucose and triglycerides levels found in the lowest stocking density tested suggest an activation of the stress system in fish held at this condition. Moreover, no changes in hepatic metabolites were observed, while values of muscle triglycerides, amino acids and lactate enhanced when stocking density increased. In conclusion, the culture of juvenile A. regius at higher initial densities (at least 13 g L-1) ensures better growth and the optimization of the existing facilities, improving welfare of this species in aquaculture systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.