This paper proposes a method for predicting future signal-to-noise ratio (SNR) in a time-division-duplexing (TDD) mobile communication environments using a convolutional neural network (CNN). The communication system uses multiple receive antennas and transmit using only one or two antennas among them. A CNN model is proposed to predict the SNR at a future transmission time based on past SNRs received from multiple antennas. The probability of reception at a certain is set to 10-100%. In case that SNR cannot be measured due to the absence of reception, linear interpolation is performed using two adjacent recorded SNRs. If even two adjacent SNRs do not exist, the SNR is set to 0dB. Comparing the predicted SNRs at multiple antennas, the antenna with the highest SNR value is selected for future transmission. To verify antenna selection accuracy, computer simulation is conducted. The simulation results substantiate the superiority of the proposed method over conventional method in single antenna selection. Regarding multi-antenna selection, the proposed method demonstrates diminished accuracy relative to conventional methods at lower speeds. Nevertheless, a comprehensive evaluation considering the root mean square error (RMSE) demonstrates the overall superiority of the proposed method across all speeds.
In this paper, a convolutional neural network (CNN) is proposed for selecting modulation and coding schemes (MCSs) at the time of future transmission in time-division-duplex (TDD) systems. The proposed method estimates the signal-to-noise ratio (SNR) obtained by the average of the equalizer’s output in the orthogonal frequency division multiplexing (OFDM) system and records it to select the most suitable MCS for future transmission. Two methods are proposed: one that directly selects an MCS and one that predicts the SNR first before selecting an MCS. The conventional method commonly used is to select an MCS based on the SNR of the most recently received signal. Computer simulations show that the outage probability and throughput of all proposed methods (direct and indirect) are superior to conventional methods (recent value). Shorter SNR sampling periods perform better than longer ones, and the accuracy of MCS selection decreases as mobile speed increases
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.