We report incidence and deep molecular characteristics of lineage switch in 182 pediatric patients affected by B-cell precursor acute lymphoblastic leukemia (BCP-ALL), who were treated with blinatumomab. We documented six cases of lineage switch that occurred after or during blinatumomab exposure. Therefore, lineage conversion was found in 17.4% of all resistance cases (4/27) and 3.2% of relapses (2/63). Half of patients switched completely from BCP-ALL to CD19-negative acute myeloid leukemia, others retained CD19-positive B-blasts and acquired an additional CD19-negative blast population: myeloid or unclassifiable. Five patients had KMT2A gene rearrangements; one had TCF3::ZNF384 translocation. The presented cases showed consistency of gene rearrangements and fusion transcripts across initially diagnosed leukemia and lineage switch. In two of six patients, the clonal architecture assessed by IG/TR gene rearrangements was stable, while in others, loss of clones or gain of new clones was noted. KMT2A-r patients demonstrated very few additional mutations, while in the TCF3::ZNF384 case, lineage switch was accompanied by a large set of additional mutations. The immunophenotype of an existing leukemia sometimes changes via different mechanisms and with different additional molecular changes. Careful investigation of all BM compartments together with all molecular –minimal residual disease studies can lead to reliable identification of lineage switch.
Summary Rearrangements of T‐ and B‐cell receptor (TCR and BCR) genes are useful markers for clonality assessment as well as for minimal residual disease (MRD) monitoring during the treatment of haematological malignancies. Currently, rearrangements of three out of four TCR and all BCR loci are used for this purpose. The fourth TCR gene, TRA, has not been used so far due to the lack of a method for its rearrangement detection in genomic DNA. Here we propose the first high‐throughput sequencing based method for the identification of clonal TRA gene rearrangements at the DNA level. The method is based on target amplification of the rearranged TRA locus using an advanced multiplex polymerase chain reaction system and high‐throughput sequencing, and has been tested on DNA samples from peripheral blood of healthy donors. Combinations of all functional V‐ and J‐segments were detected, indicating the high sensitivity of the method. Additionally, we identified clonal TRA rearrangements in 57 out of 112 tested DNA samples of patients with various T‐lineage lymphoproliferative disorders. The method fills the existing gap in utilizing the TRA gene for a wide range of studies, including clonality assessment, MRD monitoring and clonal evolution analysis in different lymphoid malignancies.
High-throughput sequencing of adaptive immune receptor repertoires is a valuable tool for receiving insights in adaptive immunity studies. Several powerful TCR/BCR repertoire reconstruction and analysis methods have been developed in the past decade. However, detecting and correcting the discrepancy between real and experimentally observed lymphocyte clone frequencies is still challenging. Here we discovered a hallmark anomaly in the ratio between read count and clone count-based frequencies of non-functional clonotypes in multiplex PCR-based immune repertoires. Calculating this anomaly, we formulated a quantitative measure of V- and J-genes frequency bias driven by multiplex PCR during library preparation called Over Amplification Rate (OAR). Based on the OAR concept, we developed an original software for multiplex PCR-specific bias evaluation and correction named iROAR: Immune Repertoire Over Amplification Removal (https://github.com/smiranast/iROAR). The iROAR algorithm was successfully tested on previously published TCR repertoires obtained using both 5' RACE (Rapid Amplification of cDNA Ends)-based and multiplex PCR-based approaches and compared with a biological spike-in-based method for PCR bias evaluation. The developed approach can increase the accuracy and consistency of repertoires reconstructed by different methods making them more applicable for comparative analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.