In this paper, firstly we have synthesized ZnO nanowires using zinc acetate, ethanol and ammonium hydroxide by a thermo-chemical method and then ZnO nanorods (NRs) have been prepared by microwave irradiation (MI) of an initial solution containing ZnO nanowires. X-ray diffraction (XRD) analysis showed the rare zinc-blende phase which grows on the surface of NRs and its crystallite size increases with the increase of microwave power. The average length and width of rods were observed several hundreds of nanometer and 80[Formula: see text]nm, respectively, from scanning electron microscope (SEM) analysis. Ultraviolet-visible (UV-vis) absorption spectroscopy indicates that a band tail forms due to MI, which has roughly 2[Formula: see text]eV energy gap. Photoluminescence (PL) spectroscopy indicated a blue emission and a white emission for ZnO nanowires and NRs, respectively. MI quenches the UV emission from ZnO NRs and enhances the surface defects’ emission. The resultant visible PL of the samples increases with the increase of microwave power that shows the growth of zinc-blende phase which has crucial effect on the defect density of NRs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.