The volume of data grows with the advent of multiple types of remote sensing sensors and in order to extract the most useful information there is a need to combine the data gathered from the different sources. The widely used panchromatic and multispectral imageries in many applications offer decimetric and metric spatial resolution. However, the spectral resolution of these images is poor. Hyperspectral imaging has unique characteristics of providing very fine spectral resolution in a large number of bands with decametric spatial resolution and found to be highly useful for a wide span of application areas that requires high spectral resolution. The fusion of spectral and spatial information provides an effective way of enhancing the spatial quality of hyperspectral imagery as well as a method for preserving spectral quality. This fusion process is not a trivial task as always there has been a tradeoff between the preservation of spatial and spectral quality information as in the original sources of fusion. In this paper, a review on hyperspectral pansharpening and hyperspectral multispectral fusion based approaches has been reported. The widely adopted quantitative and qualitative performance measures to verify the fusion results are highlighted. In addition, the challenges in existing fusion techniques have also been discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.