Wheat (Triticum aestivum) cultivar Pavon 76 carries slow-rusting resistance to leaf rust that has remained effective in Mexico since its release in 1976. 'Pavon 76' was crossed with two leaf rust-susceptible wheat cultivars, Jupateco 73S and Avocet S, and between 118 and 148 individual F(2) plant-derived F(3) and F(5) lines were evaluated for adult-plant leaf rust resistance at two field sites in Mexico during different seasons. Evaluation of F(1) plants and parents indicated that the slow-rusting resistance was partially dominant. Segregation in the F(3) and F(5) indicated that the resistance was based on two genes with additive effects. Monosomic analysis was carried out to determine the chromosomal locations of the resistance genes. For this purpose, two or three backcross-derived cytogenetic populations were developed by crossing 'Pavon 76' with a monosomic series of adult-plant leaf rust-susceptible cultivar Lal-bahadur. Evaluation of such BC(2)F(3) and BC(3)F(3) lines from 16 confirmed 'Lalbahadur' monosomics indicated that one slow-rusting gene was located in chromosome 1B of 'Pavon 76'. This gene, designated as Lr46, is the second named gene involved in slow-rusting resistance to leaf rust in wheat.
Wheat (Triticum spp. L.) breeders have significantly improved wheat adaptation to stress‐prone environments around the world. This progress has largely been achieved using empirical selection and genetic variability within the primary wheat gene pool. As most stress tolerance traits are quantitatively inherited, expansion of the available genetic diversity for stress tolerance is necessary if rates of genetic progress are to be maintained. This review explores three sources of novel genetic variability, namely synthetic wheat, landrace cultivars, and alien introgressions and their applicability to applied wheat breeding. Synthetic hexaploid wheat, derived by crossing tetraploid wheat with Aegilops tauschii, provides new genetic variability for adaptation to drought, high temperature, salinity, waterlogging, and soil micronutrient imbalances from the secondary wheat gene pool. Synthetic‐derived materials have performed well in many stressed environments globally. There is significant unexploited variation among landraces and modern wheat cultivars to improve the stress adaptation of cultivated wheat. The tertiary gene pool, with a few significant exceptions, has been more difficult to exploit due to complex inheritance, meiotic instability, and linked deleterious effects. Nevertheless, there is sufficient genetic variation in the wheat gene pool to ensure the continued improvement of wheat adaptation to abiotic stress.
BackgroundGrain size and shape greatly influence grain weight which ultimately enhances grain yield in wheat. Digital imaging (DI) based phenomic characterization can capture the three dimensional variation in grain size and shape than has hitherto been possible. In this study, we report the results from using digital imaging of grain size and shape to understand the relationship among different components of this trait, their contribution to enhance grain weight, and to identify genomic regions (QTLs) controlling grain morphology using genome wide association mapping with high density diversity array technology (DArT) and allele-specific markers.ResultsSignificant positive correlations were observed between grain weight and grain size measurements such as grain length (r = 0.43), width, thickness (r = 0.64) and factor from density (FFD) (r = 0.69). A total of 231 synthetic hexaploid wheats (SHWs) were grouped into five different sub-clusters by Bayesian structure analysis using unlinked DArT markers. Linkage disequilibrium (LD) decay was observed among DArT loci > 10 cM distance and approximately 28% marker pairs were in significant LD. In total, 197 loci over 60 chromosomal regions and 79 loci over 31 chromosomal regions were associated with grain morphology by genome wide analysis using general linear model (GLM) and mixed linear model (MLM) approaches, respectively. They were mainly distributed on homoeologous group 2, 3, 6 and 7 chromosomes. Twenty eight marker-trait associations (MTAs) on the D genome chromosomes 2D, 3D and 6D may carry novel alleles with potential to enhance grain weight due to the use of untapped wild accessions of Aegilops tauschii. Statistical simulations showed that favorable alleles for thousand kernel weight (TKW), grain length, width and thickness have additive genetic effects. Allelic variations for known genes controlling grain size and weight, viz. TaCwi-2A, TaSus-2B, TaCKX6-3D and TaGw2-6A, were also associated with TKW, grain width and thickness. In silico functional analysis predicted a range of biological functions for 32 DArT loci and receptor like kinase, known to affect plant development, appeared to be common protein family encoded by several loci responsible for grain size and shape.ConclusionConclusively, we demonstrated the application and integration of multiple approaches including high throughput phenotyping using DI, genome wide association studies (GWAS) and in silico functional analysis of candidate loci to analyze target traits, and identify candidate genomic regions underlying these traits. These approaches provided great opportunity to understand the breeding value of SHWs for improving grain weight and enhanced our deep understanding on molecular genetics of grain weight in wheat.
Conservation of the genetic variation of Triticum tauschii (Coss.) Schmalh.(Aegilops squarrosa auct. non L.) in synthetic hexaploid wheats (T. turgidum L. s.lat, x T. tauschii; 2n = 6x = 42, AABBDD) and its potential utilization for wheat improvement Abstract Triticum tauschii (Coss.) Schmalh. (Aegilops squarrosa auct. non L., 2n --2x = 14, DD genome) with its diverse range of accessions and distribution provides a unique opportunity for exploiting novel genetic variability for wheat (T. aestivum L.) improvement associated with biotic/abiotic stress factors. From our working collection of 490 T. tauschii accessions we have so far produced 430 different synthetic hexaploids (2n = 6x = 42, AABBDD) resulting from the chromosome doubling of Triticum turgidum L. s. lat. × T. tauschii Fl hybrids (each synthetic involving a different T. tauschii accession). We present here our results on hybrid production, plantlet regeneration, cytology, colchicine induced doubling of the 2n = 3x = 21 chromosome F1 hybrids, seed increase of the doubled progeny and screening for a biotic stress; Cochliobolus sativus Ito and Kuribay (syn. Helminthosporium sativum Pamm. King and Bakke); of 250 of these synthetic hexaploid (2n --6x = 42) amphiploids. Application of the direct crossing methodology involving susceptible T. aestivum cultivars with resistant T. tauschii accessions is also alluded to.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.