Time to flowering has an important impact on yield and has been a key trait in the domestication of crop plants and the spread of agriculture. In 1961, the cultivar Mari (mat-a.8) was the very first induced early barley (Hordeum vulgare L.) mutant to be released into commercial production. Mari extended the range of two-row spring barley cultivation as a result of its photoperiod insensitivity. Since its release, Mari or its derivatives have been used extensively across the world to facilitate short-season adaptation and further geographic range extension. By exploiting an extended historical collection of early-flowering mutants of barley, we identified Praematurum-a (Mat-a), the gene responsible for this key adaptive phenotype, as a homolog of the Arabidopsis thaliana circadian clock regulator Early Flowering 3 (Elf3). We characterized 87 induced mat-a mutant lines and identified >20 different mata alleles that had clear mutations leading to a defective putative ELF3 protein. Expression analysis of HvElf3 and Gigantea in mutant and wild-type plants demonstrated that mat-a mutations disturb the flowering pathway, leading to the early phenotype. Alleles of Mat-a therefore have important and demonstrated breeding value in barley but probably also in many other daylength-sensitive crop plants, where they may tune adaptation to different geographic regions and climatic conditions, a critical issue in times of global warming.earliness | food security | timing of flowering | molecular breeding | synteny
Reduced plant height and culm robustness are quantitative characteristics important for assuring cereal crop yield and quality under adverse weather conditions. A very limited number of short-culm mutant alleles were introduced into commercial crop cultivars during the Green Revolution. We identified phenotypic traits, including sturdy culm, specific for deficiencies in brassinosteroid biosynthesis and signaling in semidwarf mutants of barley (Hordeum vulgare). This set of characteristic traits was explored to perform a phenotypic screen of near-isogenic short-culm mutant lines from the brachytic, breviaristatum, dense spike, erectoides, semibrachytic, semidwarf, and slender dwarf mutant groups. In silico mapping of brassinosteroid-related genes in the barley genome in combination with sequencing of barley mutant lines assigned more than 20 historic mutants to three brassinosteroid-biosynthesis genes (BRASSINOSTEROID-6-OXIDASE, CONSTITUTIVE PHOTOMORPHOGENIC DWARF, and DIMINUTO) and one brassinosteroid-signaling gene (BRASSINOSTEROID -INSENSITIVE1 [HvBRI1]). Analyses of F2 and M2 populations, allelic crosses, and modeling of nonsynonymous amino acid exchanges in protein crystal structures gave a further understanding of the control of barley plant architecture and sturdiness by brassinosteroidrelated genes. Alternatives to the widely used but highly temperature-sensitive uzu1.a allele of HvBRI1 represent potential genetic building blocks for breeding strategies with sturdy and climate-tolerant barley cultivars.
Our findings indicate a primary retinal pathology involving the inner nuclear layer in primary progressive MS. Results in eyes without history of optic neuritis suggest possible subclinical episodes of optic neuritis or retrograde trans-synaptic degeneration of retinal ganglion cells and their axons.
The genes encoding yeast old yellow enzymes (OYE 1, 2, and 3) and NAD(P)H-dependent 2-cyclohexen-1-one reductase from Zymomonas mobilis (NCR) were expressed separately in Escherichia coli. All four recombinant strains reduced the carbon double bond in alpha,beta-unsaturated alkenals and alkenones, however rates and enantio-specificities differed. Which of the two possible enantiomers was predominantly formed, was not only dependent on the choice of enzyme but also on the substrate: In addition to a dependency on methylation in alpha- or beta-position, the data of this study illustrate that firstly the E- or Z-configuration (cis- or trans-) of the carbon double-bond and secondly the remainder of the substrate molecule play roles in determining enantio-specificity. Based on the currently accepted mechanism of flavin mediated anti-hydrogenation of the carbon double bond, the data in this study may be explained by a flipped orientation of some of the substrates in the active center of OYE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.