According to the development of the concept of “zero failure” or “zero fuel element defect”, accepted in 2011, which consists in reducing the number of fuel elements that are depressurized in the process of operation to the reached level in the leading countries in nuclear energy (10−6–10−5 defective fuel rods) and avoidance of fuel assemblies with non-hermetic cladding of fuel rods for further operation, including defects with a “gas leak” type, new promising fuels are being developed and introduced, including methods for justifying their safety. Thus, to ensure reliability and safety of new fuel types, it is necessary to provide procedures for monitoring current performance characteristics at all stages of the life cycle of fuel rods. In this paper, experience is given on the development and implementation of instrumentation and methods for monitoring of fuel rods with advanced types of nuclear fuel for VVER reactors that ensure the reliability, safety and competitiveness of technologies associated with the use of advanced fuel rod types, and the implementation of associated components, systems and equipment for monitoring and diagnostics. The features of the applied techniques are presented, and the new system of requirements for the implemented equipment created on their basis. This research continues, and the analysis of intermediate experimental data is carried out in this article.
In highly sensitive bioanalytical systems intended for the detection of protein biomarkers at low and ultra-low concentrations, the efficiency of capturing target biomolecules from the volume of the analyzed sample onto the sensitive surface of the detection system is a crucial factor. Herein, the application of excess electric charge for the enhancement of transport of target biomolecules towards the sensitive surface of a detection system is considered. In our experiments, we demonstrate that an uncompensated electric charge is induced in droplets of protein-free water owing to the separation of charge in a part of the Kelvin dropper either with or without the use of an external electric field. The distribution of an excess electric charge within a protein-free water droplet is calculated. It is proposed that the efficiency of protein capturing onto the sensitive surface correlates with the sign and the amount of charge induced per every single protein biomolecule. The effect described herein can allow one to make the protein capturing controllable, enhancing the protein capturing in the desired (though small) sensitive area of a detector. This can be very useful in novel systems intended for highly sensitive detection of proteins at ultra-low (≤10−15 M) concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.