An expanded model of the 3-D shear wave velocity structure of the uppermost mantle beneath eastern Africa has been developed using earthquakes recorded by the AfricaArray East African Seismic Experiment in conjunction with data from permanent stations and previously deployed temporary stations. The combined data set comprises 331 earthquakes recorded on a total of 95 seismic stations spanning Kenya, Uganda, Tanzania, Zambia and Malawi. In this study, data from 149 earthquakes were used to determine fundamental-mode Rayleigh wave phase velocities at periods ranging from 20 to 182 s using the two-plane wave method, and then combined with the similarly processed published measurements and inverted for a 3-D shear wave velocity model of the uppermost mantle. New features in the model include (1) a low-velocity region in western Zambia, (2) a high-velocity region in eastern Zambia, (3) a low-velocity region in eastern Tanzania and (4) low-velocity regions beneath the Lake Malawi rift. When considered in conjunction with mapped seismicity, these results support a secondary western rift branch striking southwestwards from Lake Tanganyika, likely exploiting the relatively weak lithosphere of the southern Kibaran Belt between the Bangweulu Block and the Congo Craton. We estimate a lithospheric thickness of ∼150-200 km for the substantial fast shear wave anomaly imaged in eastern Zambia, which may be a southward subsurface extension of the Bangweulu Block. The low-velocity region in eastern Tanzania suggests that the eastern rift branch trends southeastwards offshore eastern Tanzania coincident with the purported location of the northern margin of the proposed Ruvuma microplate. Pronounced velocity lows along the Lake Malawi rift are found beneath the northern and southern ends of the lake, but not beneath the central portion of the lake.
SUMMARY The shear wave velocity structure of the upper mantle beneath the East African plateau has been investigated using teleseismic surface waves recorded on new broadband seismic stations deployed in Uganda and Tanzania, as well as on previously deployed stations in Tanzania and Kenya. Rayleigh wave phase velocities at periods between 20 and 182 s, measured with a two‐plane wave method, have been used to create phase velocity maps, and dispersion curves extracted from the maps have been inverted to obtain a quasi‐3‐D shear wave velocity model of the upper mantle. We find that phase velocities beneath the Tanzania Craton and areas directly north and west of the craton are faster, at all periods, than those beneath the Western and Eastern branches of the East African Rift System. At periods <50 s, the western branch is slower than the Eastern Branch, but at periods greater than 50 s, this relationship is reversed. Anisotropy is found at all periods, with a generally north–south fast polarization direction. The shear wave velocity model shows a seismically fast lithosphere (lid) beneath the Tanzania Craton to depths between 150 and 200 km. The fast velocities in this depth range extend to the north beneath the Uganda Basement Complex and to the east beneath the northern Tanzania divergence zone, indicating that these regions together form a rigid block around which rifting has occurred within weaker mobile belt lithosphere. The Eastern and Western branches are slower than the craton at lithospheric mantle depths, and both branches show variable structure in the upper 200 km of the mantle, with the lowest velocities found beneath areas of Cenozoic volcanism. At depths greater than ∼225 km, a low velocity anomaly is present beneath the entire East African plateau that may extend into the mantle transition zone. Velocities in the low velocity region are reduced by ≥10 per cent relative to lid velocities, and if attributed only to temperature variations, would represent an unrealistic thermal perturbation of >400 K. Consequently, it is likely that the velocity reduction reflects a combination of thermal and compositional changes, and also possibly the presence of partial melt. The width and thickness of the low velocity anomaly is greater than typically expected for a plume head and is more easily attributed to an upward continuation of the lower mantle African superplume structure into the upper mantle.
The Cameroon Volcanic Line (CVL) is a 1800 km long volcanic chain, extending SW-NE from the Gulf of Guinea into Central Africa, that lacks the typical age progression exhibited by hot spot-related volcanic tracks. This study investigates the upper mantle seismic structure beneath the CVL and surrounding regions to constrain the origin of volcanic lines that are poorly described by the classic plume model. Rayleigh wave phase velocities are measured at periods from 20 to 182 s following the two-plane wave methodology, using data from the Cameroon Seismic Experiment, which consists of 32 broadband stations deployed between 2005 and 2007. These phase velocities are then inverted to build a model of shear wave velocity structure in the upper mantle beneath the CVL. Results show that phase velocities beneath the CVL are reduced at all periods, with average velocities beneath the CVL deviating more than -2% from the regional average and +4% beneath the Congo Craton. This distinction is observed for all periods but is less pronounced for the longest periods measured. Inversion for shear wave velocity structure indicates a tabular low velocity anomaly directly beneath the CVL at depths of 50 to at least 200 km and a sharp vertical boundary with faster velocities beneath the Congo Craton. These observations demonstrate widespread infiltration or erosion of the continental lithosphere beneath the CVL, most likely caused by mantle upwelling associated with edge-flow convection driven by the Congo Craton or by lithospheric instabilities that develop due to the nearby edge of the African continent.
S U M M A R YBroad-band seismic data from the southern African seismic experiment and the AfricaArray network are used to investigate the seismic velocity structure of the upper mantle beneath southern Africa, and in particular beneath the Kaapvaal Craton. A two-plane approximation method that includes a finite frequency sensitivity kernel is employed to measure Rayleigh wave phase velocities, which are inverted to obtain a quasi-3-D shear wave velocity model of the upper mantle. We find phase velocities for the Kaapvaal Craton and surrounding mobile belts that are comparable to those reported by previous studies, and we find little evidence for variation from east to west across the Namaqua-Natal Belt, a region not well imaged in previous studies. A high-velocity upper-mantle lid is found beneath the Kaapvaal Craton and most of southern Africa. For the Kaapvaal Craton, the thickness of the lid (∼150-200 km) is consistent with the lid thicknesses reported in many previous studies. The cratonic lid is underlain by a ∼100-km thick low-velocity zone with a 3.9 per cent maximum velocity reduction. By comparing the velocity model to those published for other Archean cratons, we find few differences, and therefore conclude that there is little evidence in the shear wave velocity structure of the mantle to indicate that the southern African plateau is supported by an upper-mantle thermal anomaly.
The Alaska Amphibious Community Seismic Experiment (AACSE) is a shoreline-crossing passive- and active-source seismic experiment that took place from May 2018 through August 2019 along an ∼700 km long section of the Aleutian subduction zone spanning Kodiak Island and the Alaska Peninsula. The experiment featured 105 broadband seismometers; 30 were deployed onshore, and 75 were deployed offshore in Ocean Bottom Seismometer (OBS) packages. Additional strong-motion instruments were also deployed at six onshore seismic sites. Offshore OBS stretched from the outer rise across the trench to the shelf. OBSs in shallow water (<262 m depth) were deployed with a trawl-resistant shield, and deeper OBSs were unshielded. Additionally, a number of OBS-mounted strong-motion instruments, differential and absolute pressure gauges, hydrophones, and temperature and salinity sensors were deployed. OBSs were deployed on two cruises of the R/V Sikuliaq in May and July 2018 and retrieved on two cruises aboard the R/V Sikuliaq and R/V Langseth in August–September 2019. A complementary 398-instrument nodal seismometer array was deployed on Kodiak Island for four weeks in May–June 2019, and an active-source seismic survey on the R/V Langseth was arranged in June 2019 to shoot into the AACSE broadband network and the nodes. Additional underway data from cruises include seafloor bathymetry and sub-bottom profiles, with extra data collected near the rupture zone of the 2018 Mw 7.9 offshore-Kodiak earthquake. The AACSE network was deployed simultaneously with the EarthScope Transportable Array (TA) in Alaska, effectively densifying and extending the TA offshore in the region of the Alaska Peninsula. AACSE is a community experiment, and all data were made available publicly as soon as feasible in appropriate repositories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.