Fully-relativistic first-principles calculations of the Fe(001) surface demonstrate that resonant surface (interface) states may produce sizeable tunneling anisotropic magnetoresistance in magnetic tunnel junctions with a single magnetic electrode. The effect is driven by the spin-orbit coupling. It shifts the resonant surface band via the Rashba effect when the magnetization direction changes. We find that spin-flip scattering at the interface is controlled not only by the strength of the spin-orbit coupling, but depends strongly on the intrinsic width of the resonant surface states.
This paper summarises the theory and functionality behind Questaal, an open-source suite of codes for calculating the electronic structure and related properties of materials from first principles. The formalism of the linearised muffin-tin orbital (LMTO) method is revisited in detail and developed further by the introduction of short-ranged tight-binding basis functions for full-potential calculations. The LMTO method is presented in both Green's function and wave function formulations for bulk and layered systems. The suite's full-potential LMTO code uses a sophisticated basis and augmentation method that allows an efficient and precise solution to the band problem at different levels of theory, most importantly density functional theory, LDA+U , quasi-particle self-consistent GW and combinations of these with dynamical mean field theory. This paper details the technical and theoretical bases of these methods, their implementation in Questaal, and provides an overview of the code's design and capabilities. framework of an extension to the linear muffin-tin orbital (LMTO) technique including a highly precise and efficient full-potential implementation. An advanced fully-relativistic, non-collinear implementation based on the atomic sphere approximation is used for calculating transport and magnetic properties.
We use a recently developed self-consistent GW approximation to present systematic ab initio calculations of the conduction band spin splitting in III-V and II-VI zinc blende semiconductors. The spin-orbit interaction is taken into account as a perturbation to the scalar relativistic Hamiltonian. These are the first calculations of conduction band spin splittings based on a quasiparticle approach; and because the self-consistent GW scheme accurately reproduces the relevant band parameters, it is expected to be a reliable predictor of spin splittings. The results are compared to the few available experimental data and a previous calculation based on a model one-particle potential. We also briefly address the widely used k x p parametrization in the context of these results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.