The aim of this study was to investigate the value of fractal dimension in separating normal and cancerous images, and to examine the relationship between fractal dimension and traditional texture analysis features. Forty-four normal images and 58 cancer images from sections of the colon were analyzed. A "leave-one-out" analysis approach was used to classify the samples into each group. With fractal analysis there was a highly significant difference between groups (p < 0.0001). Correlation and entropy features showed greater differences between the groups (p < 0.0001). Nevertheless, the addition of fractal analysis to the feature analysis improved the sensitivity from 90% to 95% and specificity from 86% to 93%.
The development of an automated algorithm for the categorization of normal and cancerous colon mucosa is reported. Six features based on texture analysis were studied. They were derived using the co-occurrence matrix and were angular second moment, entropy, contrast, inverse difference moment, dissimilarity, and correlation. Optical density was also studied. Forty-four normal images and 58 cancerous images from sections of the colon were analyzed. These two groups were split equally into two subgroups: one set was used for supervised training and the other to test the classification algorithm. A stepwise selection procedure showed that correlation and entropy were the features that discriminated most strongly between normal and cancerous tissue (P < 0.0001). A parametric linear-discriminate function was used to determine the classification rule. For the training set, a sensitivity and specificity of 93.1% and 81.8%, respectively, were achieved, with an overall accuracy of 88.2%. These results were confirmed with the test set, with a sensitivity and specificity of 93.1% and 86.4%, respectively, and an overall accuracy of 90.2%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.