We have investigated the effect of the long-range Coulomb interaction on the one-particle excitation spectrum of n-type germanium, using tunneling spectroscopy on mechanically controllable break junctions. At low temperatures, the tunnel conductance shows a minimum at zero bias voltage due to the Coulomb gap. Above 1 K, the gap is filled by thermal excitations. This behavior is reflected in the variable-range hopping resistivity measured on the same samples: up to a few degrees Kelvin the Efros-Shklovskii lnR infinity T(-1/2) law is obeyed, whereas at higher temperatures deviations from this law occur. The type of crossover differs from that considered previously in the literature.
A B S T R A C TThis study investigates the generation of the low-frequency borehole Stoneley wave (tube wave) by a plane P-wave propagating through the surrounding elastic formation, which is intersected by a fluid-filled fracture. A model is constructed taking into account the dynamic fluid coupling between the borehole interior and the fluid-filled fracture of infinite extent with parallel walls. The basic mechanism of such coupling is due to the contraction of the fracture walls by the incident P-wave, leading to seismic radiation into the fracture. The dynamic fluid flux from the fracture into the borehole interior, and vice versa, is the source of the low-frequency Stoneley wave. An expression for the monopole pressure source, exciting the tube wave, is obtained.The tube-wave equation in the long-wave approximation is derived in the presence of a fluid-filled fracture of infinite extent. Amplitudes and waveforms of Stoneley waves are analysed in the seismic wavelength range for P-wave pulses of various shapes. It is shown that the amplitude and waveform of the Stoneley wave depends significantly on the two dimensionless parameters of the problem: (1) the ratio of the borehole radius to the dominant wavelength of the incident pulse; (2) the ratio of the fracture width to the borehole radius. It is found that the amplitude of the generated Stoneley wave can be of the order of the P-wave amplitude in the borehole fluid. Stoneley waveforms are found to be completely different from those of the incident pulse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.