We report O-, Al-Mg-, K-, Ca-, and Ti-isotopic data for a total of 96 presolar oxide grains found in residues of several unequilibrated ordinary chondrite meteorites. Mg ratios suggest an origin for some grains in binary star systems where mass transfer from an evolved companion has altered the parent star compositions. A supernova origin for the hitherto enigmatic 18 O-rich Group 4 grains is strongly supported by multielement isotopic data for two grains. The Group 4 data are consistent with an origin in a single supernova in which variable amounts of material from the deep 16 O-rich interior mixed with a unique end-member mixture of the outer layers. The Ti oxide grains primarily formed in low-mass AGB stars. They are smaller and rarer than presolar Al 2 O 3 , reflecting the lower abundance of Ti than Al in AGB envelopes.
Raster ion imaging of the oxygen isotopes with the NanoSIMS ion microprobe has been used to identify presolar grains in two primitive meteorites. Eleven presolar silicates and eight presolar oxides were identified in the primitive carbonaceous chondrite Acfer 094 for abundances of 325 and 360 parts per million (ppm), respectively. In addition, nine presolar silicates and five presolar oxide grains were identified in the CO3 chondrite ALHA 77307, for abundances of 320 and 200 ppm, respectively. These abundances, which are matrix-normalized and corrected for instrumental detection efficiencies, are much higher than those of other presolar phases, with the exception of nanodiamonds, although the latter may not all be presolar. The chemical compositions of six presolar silicate grains from ALHA 77307 were elucidated by Auger spectroscopy. Transmission electron microscopy (TEM ) analysis of one presolar silicate grain revealed a nonstoichiometric composition and an amorphous structure as indicated by the diffuse electron diffraction pattern. The oxygen isotopic compositions of the presolar silicates indicate origins in red giant and asymptotic giant branch stars. Analysis of the Si isotopic compositions of 10 presolar silicates provides further constraints on the effects of Galactic chemical evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.