We present the development of a mount that accommodates a mirror and a piezoelectric actuator with emphasis on physical needs for low temperature operation. The design uses a monolithic construction with flexure features that allow it to steadily hold the mirror and the piezoelectric actuator without glue and accommodate differential thermal contraction. The mount is small and lightweight, adding little heat capacity and inertia. It provides a pre-loading of the piezoelectric actuator as well as a good thermal connection to the mirror and a thermal short across the piezoelectric actuator. The performance of the assemblies has been tested by thermally cycling from room temperature down to 3 K more than a dozen times and over one hundred times to 77 K, without showing any derating. Such mounts are proposed for the cryogenic optical enhancement cavities of the ALPHA experiment at CERN for laser spectroscopy of antihydrogen and for hydrogen spectroscopy in our laboratory at UFRJ.
We demonstrate the production of cryogenic beams of heteronuclear molecules from the matrix isolation sublimation (MISu) technique. A sapphire mirror serves as a substrate whereupon a solid Ne matrix is grown. Atoms of Li, H, Ca, and C are implanted into the matrix via subsequent laser ablation of different solid precursors such as Ca, Li, LiH, and graphite. The matrix is sublimated into vacuum generating a cryogenic beam of Ne carrying the previously isolated neutral atomic and molecular species. A compact and low energy electron source and time-of-flight mass spectrometer was designed to fit this system at low temperature. With electron ionization time-of-flight mass spectrometry, we analyze the species coming from MISu and demonstrate the formation of heteronuclear molecules in the matrix. In this first study, we produced LiCa from the sequential implantation of Li and Ca into the matrix and some clusters of CLi after Li and C ablation. Also from ablation of a single LiH pellet, we observed clusters of LiH. This novel technique opens up the opportunity to generate cryogenic beams of different molecules for precision physics and chemistry studies. Laser or microwave high resolution spectroscopy of a molecular beam benefits from low translational and rovibrational temperatures and forward velocities, such as the ones produced in this technique. Toward the prospect of enhancing the molecular formation, we introduce a new method to study the atomic diffusion of Li and Ca in the Ne matrix via laser spectroscopy during sublimation. We estimate a small diffusion coefficient at 7 K, but a surprisingly linear atomic dispersion during sublimation. The method is extensive to other species and matrices.
We describe the apparatus to generate cryogenic beams of atoms and molecules based on matrix isolation sublimation. Isolation matrices of Ne and H2 are hosts for atomic and molecular species which are sublimated into vacuum at cryogenic temperatures. The resulting cryogenic beams are used for high-resolution laser spectroscopy. The technique also aims at loading atomic and molecular traps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.