The effect of simultaneous substitutions of Ca at A site and Nb or Ta at B site in pyrochlore-type solid solutions: (Ca(x)Gd(1-x))(2)(Zr(1-x)M(x))(2)O(7) (x = 0.1, 0.2, 0.3, 0.4, 0.5 and M = Nb or Ta) were studied by powder X-ray diffraction (XRD), FT NIR Raman spectroscopic techniques and transmission electron microscopy. The solid solutions were prepared by the conventional high-temperature ceramic route. The XRD results and Rietveld analysis revealed that the defect fluorite structure of Gd(2)Zr(2)O(7) progressively changed to a more ordered pyrochlore phase by simultaneous substitutions at A and B sites. Raman spectroscopy reveals the progressive ordering in the anion sublattice with simultaneous doping. High-resolution images and selected-area electron diffraction patterns obtained from TEM confirms the XRD and Raman spectroscopic results. High-temperature XRD studies show that the lattice expansion coefficient in these pyrochlore oxides is of the order of 10(-6) K(-1). Lattice thermal expansion coefficient increases with increase of disorder in pyrochlore oxides, and hence the variation of thermal expansion coefficient with composition is also a good indicator of disordering in pyrochlore-type oxides. The ionic conducting properties of the samples were characterised by impedance spectroscopy, and it was found that Nb-doped compositions show a considerable change in conductivity near the phase boundary of disordered pyrochlore and defect fluorite phases.
A series of quaternary powellites with varying cerium contents in a Ca–Ce–Nb–M–O (where M=Mo or W) system has been synthesized through the solid‐state route. Powder X‐ray diffraction analysis shows that these compounds crystallize in a tetragonal powellite structure with the I41/a space group. The structure was further confirmed by Raman spectroscopic analysis. The electrical conductivity studies reveal that they exhibit negative temperature coefficient (NTC) thermistor characteristics. The characteristic parameter of the thermistor (β) is found to be in the range of 5000–7000 K, and these values can be tuned with the cerium concentration. The electrical conductivity in these compounds is due to the presence of Ce3+, which remains in the reduced state without being oxidized to Ce4+ due to the structural stabilization. The X‐ray photoelectron spectroscopy analysis corroborates the presence of Ce in the 3+ state.
Quaternary pyrochlore-type solid solutions, CaGdZrNb(1-x)Ta(x)O(7) (x = 0, 0.2, 0.4, 0.6, 0.8, 1), were prepared by a high-temperature ceramic route. The pyrochlore phases of the compounds were confirmed by powder X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscopy. The crystallographic parameters of the pyrochlore compounds were accurately determined by Rietveld analysis of the powder XRD data. The isovalent substitution of Ta in place of Nb at the B site can reveal the effect of chemical bonding on lattice thermal expansion and oxide ion conductivity because both Nb and Ta have the same ionic radius (0.64 Å). Lattice thermal expansion coefficients of the samples were calculated from high-temperature XRD measurements, and it was found that the thermal expansion coefficient decreases with substitution of Ta. Oxide ion conductivity measured by a two-probe method also shows the same trend with substitution of Ta, and this can be attributed to the high bond strength of the Ta-O bond compared to that of the Nb-O bond. Microstructural characterization using scanning electron microscopy proves that the size of the grains has a small effect on the oxide ion conductivity. Our studies established the role of chemical bonding in deciding the conductivity of pyrochlore oxides and confirmed that the 48f-48f mechanism of oxide ion conduction is dominant in pyrochlore oxides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.