Recently, Bolfarine et al. [Bimodal symmetric-asymmetric power-normal families. Commun Statist Theory Methods. Forthcoming. ] introduced a bimodal asymmetric model having the normal and skew normal as special cases. Here, we prove a stochastic representation for their bimodal asymmetric model and use it to generate random numbers from that model. It is shown how the resulting algorithm can be seen as an improvement over the rejection method. We also discuss practical and numerical aspects regarding the estimation of the model parameters by maximum likelihood under simple random sampling. We show that a unique stationary point of the likelihood equations exists except when all observations have the same sign. However, the location-scale extension of the model usually presents two or more roots and this fact is illustrated here. The standard maximization routines available in the R system (Broyden-Fletcher-Goldfarb-Shanno (BFGS), Trust, Nelder-Mead) were considered in our implementations but exhibited similar performance. We show the usefulness of inspecting profile loglikelihoods as a method to obtain starting values for maximization and illustrate data analysis with the location-scale model in the presence of multiple roots. A simple Bayesian model is discussed in the context of a data set which presents a flat likelihood in the direction of the skewness parameter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.